CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 16 — More about Makefiles and
introduction to C++

Goal for Today

* A few more words about makefiles

* Starting C++

Building an Executable

* |Last time, we saw the steps involved in building an
executable

- Preprocess and compile each . ¢ file into a . o file

- Optionally put . o files into a library (. a file)

- Link everything together into an executable
* This process can get complicated for large systems
* Rebuilding a large system can also take a long time
* Therefore: need a way to manage the build process

- We are studying one specific utility: make
- But IDEs (Eclipse, VisualStudio) also do that for you

* Two main goals

- Automate the build process with a script

- When a source file changes, rebuild only what is
needed: keep track of dependencies

Recompilation Management

* The “theory” behind avoiding unnecessary
compilation is a “dependency graph”

* To create targett, need

- Sourcess, s s and a command a

21

e Ift newers than all s,, assume no reason to rebuild it

* Otherwise, recursive rebuild

- If s, is itself a target, check if need to rebuild it

- If need to rebuild, use the given command a

Writing Makefiles

* | asttime we saw the basics

* Today we will learn a few extra things to make our
Makefiles simpler and more elegant

* Note: Make is language independent. Can have a
makefile for Java, C, C++, latex documents, etc.

Variables

* You can define variables in a Makefile

CBJ = mai n-stack.o stack.o
mai n-stack: $(0BJ)
gcc -0 mai n-stack $(0BJ)

* Help avoid error-prone duplications

- List of object files

- List of executables
* |n make, variables are often called macros

Default Macros

There exists a lot of default macros
You must respect the naming conventions

Override defaults in the Makefile
CC = gcc
CFLAGS = -wall -g
gueue. 0. queue. c queue. h

$(CC) $(CFLAGS) -c queue.c
Override defaults with environment variables
export CFLAGS ="-Wall -gQ”

View list of macros: make -p

Revenge of Funny Characters

* Internal macros

- $@ designates the current target

- $” designates all prerequisites

- $< designates left-most prerequisite
* Pattern rules

o: %c

$(CO $(CFLAGS) -c $<

* Basic ones already defined

- They are called implicit rules

Dependencies

* Our Makefile is starting to look quite elegant

* But, we are still listing dependencies manually
- Keeping track of dependencies is hard
- ltis easy to forget some header files

* This is not make's problem

- Make has no understanding of programming
languages. It only understands rules

* Because this is error-prone, there are often
language-specific tools that can keep track of
dependencies for you

Dependency-Generator Example

e gcc -wW
- Useful variants include - M and - MG (man gcc)

- Automatically creates a rule for you

- One approach, run via a phony depend target
depend: $(SRC
$(CCO -M$" > .depend
- Then i ncl ude the resulting file in your Makefile
| ncl ude . depend

* mekedepend combines many of these steps

* Read more if you are interested in this topic

Installing Program from Source

* You don't need to know this for the class
* Typical four steps when installing software

aut oconf (sometimes set up script instead)
configure —prefix=/where/to/install/
make

make | nst al |

* Configure script: defines variables needed in the
Makefile, performs various checks before compiling

* Configure script has many options so try
configure --help

What You Need to Know

* Makefiles are a complicated topic

* For this class, you should be able to

- Write Makefiles at the level of Makefile.v2

- Read and understand Makefiles of the form
Makefile.v3 and Makefile.v4

* For dependency generation (Makefile.v5), you only
need to know that such a thing exists

Introduction to C++

* Object-oriented language like Java

* Based on C, manual memory management like in C
* Improves many features of C

- C++ can be used solely as an “improved C”
(without defining any classes)

* More complete standard library than C
* The “Standard Template Library” (STL)

- A lot like Java “collections classes”
- But not quite the same... so we will discuss them

Plan for This Week

* We will learn just enough C++ to get you started

* Today: the basics

- Defining and using a simple class
- Memory management

* When objects are created and destroyed
* Passing objects by value or by reference

* Wednesday: inheritance

* Friday: templates and STL

Hello World in C++

[/ Include header file fromstd library

[/ Note: “new style” header files have no .h

#1 ncl ude < ostreanvp

Int main() {
/] Use standard out put stream cout
[/ and operator << to send “Hello Wrl d”
[/ and an end |line to stdout
std::cout << "Hello Wrld" << std::endl;

return O;

C++ Formatted Input/Output

* C++ 1/O occurs in streams of bytes

* Stream insertion operator
- Left shift operator (<<) designates stream output
- Sends data from a variable to a stream

* Stream extraction operator
- Right shift operator (>>) designates stream input
- Extracts data from a stream into a variable
- Example: cin >> ny_i nt eger;

e cout, cin,andcerr are stream objects

- They are connected to st dout, stdin andstderr

Compiling C++ Programs

It is standard for C files to have extension .c

For C++, you can use: . cpp, . cxx, .C, . cc

To compile C++ code, use g++ instead of gcc
Standard example: “Hello World” (hel | 0. cc)
g++ -VWAll -0 hello hello.cc

Notes

- In C++, there are no constraints on filenames
- You can also put multiple classes in one file

Namespaces

#1 ncl ude <i ostreanp
usi ng nanmespace std,

Int main() {

cout << "Hello Wirld" << endl;
return O;

Namespaces

* A namespace allows us to group declarations
under one name

* Namespaces help avoid name collisions and
redefinition errors

* All the elements of the standard C++ library are
declared within namespace st d

* You should always use a namespace for your own
declarations

Namespaces

#1 ncl ude <i ostreane
usi ng nanespace std,
nanespace MYSPACE {
t ypedef struct {
I nt a;
YA

}

Int main() {
MYSPACE: : A sa;
sa.a = 3;
cout << sa.a << endl; // Prints: 3
return O;

Our First C++ Class

* QOk... now that we understand “Hello World”, we
can get into the heart of things...

 We will examine a class called Property

- We will point out differences between C++ and C
- As well as difference between C++ and Java

* We will also discuss memory management

A Simple C++ Class

 Examine the Pr operty class

— Class definition in . h file

* Includes member function declarations
* Can also include function definitions (not recommended)

- Member function definitions are in . cc file

- Pay close attention to the constructor & destructor
- Note the access specifiers: public, private

- Note that we can use pointert hi s (int oSt ri ng)
- How the st at i ¢ attribute is declared and initialized

- The use of namespaces

Member Access Specifiers

* They determine the type of access

— public: accessible to everyone
- private: accessible only to member functions

* The access specifiers can appear

- In any order inside the header file
- Multiple times, but preferably only once

* Default access mode is private

Function Overloading

* C++ enables function overloading where

- Several functions have the same name
- But different parameters

* The compiler selects the appropriate function
- Matches arguments with parameters
* Examples:

- The two: adj ust Pri ce methods

- The two constructors

* For more information, you can read one of many C++
tutorials

- http://www.cplusplus.com/doc/tutorial/

