CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 17 — Manipulating objects
and inheritance in C++

Plan for Today

Finish studying our first C++ class from last lecture
Discuss when objects are created and destroyed
- Creating objects on the stack

— Creating objects on the heap

— Copy constructors

- Passing objects to functions

* call-by-value vs call-by-reference
Inheritance in C++

Casting in C++ (we will do this next time)

Virtual functions (we will do this next time)

Our Simple C++ Class

Examine the Pr operty class (continued)

e (Class definition is in . h file

- Includes member function declarations
— Can include function definitions but not recommended

* Instead separate interface from implementation
 Member function definitions are in . cc file

e Pay close attention to the constructors & destructor

* Note the access specifiers: public, private
* Note that we can use pointert hi s (intoStri ng)
* How the st at i c attribute is declared and initialized

* The use of namespaces

Memory Management

with Objects

e Examine the function mai n

- See how we can declare an object

* On the stack: p1 and p3
* On the heap: p2

- See how we can pass an object by value
* Function: by val ue
* Note that we are making a copy!
- See how we can pass an object by reference

* Function: by ref erence (no copy)

* Examine the output that the program produces

- Observe calls to constructors and destructors

Dynamic Memory Allocation

* |n C++, dynamic memory allocation is done with
newand del et e

° New

- Does not require any size specification
- Invokes the constructor of the object
- Returns a pointer of the right type

e del et e invokes the destructor of the object

* Example:
Property *p2 = new Property(price,size);
del ete p2;

New and Delete

Examples

/] SInple exampl e
Int *p_int = new int,;
delete p_iInt;

[/ Wth initialization
Iint *p.int2 = newint(3);

del ete p_Int2;

// Allocating an array

int *p_array = new i nt[10];

delete [] p_array,;

New and Delete Examples

// Allocating an object on the heap
Property *p2 = new Property(price,size);
del ete p2;

[/ Allocating an array of objects
Property *p2_array =

new Property[10] (price, size),
delete [] p2_array,;

Copy Constructor

* A copy constructor is invoked every time you create
a new object from an existing object

* Example:
Property pl(price,size),
Property p3 = pl;

nvokes: Property(Property& p);

* Other examples: passing an object by value or
returning an object by value from a function

* |f you do not provide a copy constructor, the default
behavior is a memberwise copy

- Not always the right thing: shallow copy vs deep copy

Where We Are in Our Plan

* Finish studying our first C++ class from last lecture

* Discuss when objects are created and destroyed

- Creating objects on the stack
— Creating objects on the heap
— Copy constructors
- Passing objects to functions
* call-by-value vs call-by-reference
* |nheritance in C++
* Casting in C++ (we will cover this next lecture)

* Virtual functions (we will cover this next lecture)

Inheritance in C++

* Three types: public, protected, and private

* Public inheritance is used most frequently

- public in base class -> public in derived class
- protected -> protected

— private -> not accessible in derived class

* Facilitates encapsulation (information hiding)

* Protected data members are accessible from

- Member functions
- Member functions of derived classes

Base Class and Derived Class

class Land : public Property {

e Class Land inherits from class Property
 Land is called the derived class

* Property is called the base class

Inheritance Example

Property Base class
Land Derived class

T

House Derived class

Constructors and Destructors

 Examine the output of program est at e

- Notice that the Pr oper t y constructor is also
called when a Land object is constructed

- Notice that the Pr oper t y destructor is also
called when a Land object is destructed

* Invoked implicitly by default or
* Specific constructor can be invoked explicitly

- Example: examine constructor of class Land

- |t invokes one of the constructors of Property

Function Overriding

Derived class can override parent member function

It simply declares a member function with
- Same name as function in parent class

- Same parameters

- Example:toStri ng

To access parent member function from derived
class, use the scope resolution operator

- Property::toString()

What is the difference between overloading and
overriding?

* Carefully study the code that accompanies today's
lecture

