
11/30/2009

1

David Notkin Autumn 2009 CSE303 Lecture 24

• "There is no reason anyone would want a computer in their home."

Ken Olson, president, chairman and founder of Digital Equipment

Corp., 1977

• "C makes it easy to shoot yourself in the foot; C++ makes it harder,

but when you do, it blows away your whole leg."

Bjarne Stroustrup

• "Prediction is very hard. Especially about the future."

Yogi Berra

The plan

11/30 C++ intro 12/2 12/4

12/7 12/9 12/11

Final prep, evaluations

12/15

Final

CSE303 Au09 2

• Due time for HW#7?

• A delay for HW#6?

• Yes, I’ll really prep you for the final

• Topics you’d like to hear about?

History of C++

• Bjarne Stroustrup, ATT Bell Labs,1980

• A"mid-level" language, C plus OOP plus lots

of new syntax

– statically typed; compiled into native executables (like C)

– designed to be forward-compatible (old C programs work as

C++)

– supports many programming styles; but difficult to master

• Current usage

– most operating system software (Windows, Linux) is in

C/C++

– most applications, games, device drivers, embedded

software

Design goals of C++

• Provide object-oriented features in C-based

language, without compromising efficiency

– backwards compatibility with C

– better static type checking

– data abstraction

– objects and classes

– prefer efficiency of compiled code where possible

• Important principle

– if you do not use a feature, your compiled code

should be as efficient as if the language did not

include the feature

Difficulties in using C++

• Casts

– sometimes no-op, sometimes not (e.g., multiple

inheritance)

• Lack of garbage collection

• Objects can be allocated on stack or heap

– can be more efficient, but assignment works

badly; dangling pointers

• Too many ways to do the same thing

• Multiple inheritance

– efforts at efficiency lead to complicated behavior

• Lack of standardization between C++ compilers

(improving)

Hello, world!

// hello.cpp

#include <iostream>

using namespace std;

int main() {

cout << "Hello, world!" << endl;

return 0;

}

11/30/2009

2

Compiling a C++ program

• g++ -g -Wall -o executable source.cpp

• g++ -g -Wall -c source.cpp (make a .o file)

• program files named with .cpp, not .c

– sometimes also named .cc

• g++ compiler, not gcc

– same command-line arguments and concepts

Basic language syntax

• same as C:

– all control statements (if/else, for, while, do), expressions,

precedence, variables, braces, functions, parameters,

returns, types (can use bool without including stdbool),

comments (// officially allowed), preprocessor

• new/different:

– classes and objects

– inheritance (single and multiple!)

– data structures (STL)

– operator overloading

– templates (generics)

– exceptions

– namespaces

– reference parameters

I/O streams

• #include <iostream>

– I/O library; replaces some features of stdio.h

– in C++ you can include system libraries without

writing the .h

• stream: a source/target for reading/writing bytes in

sequence.

– other iostreams: fstream, stringstream, etc.

variable description

cin standard input stream

cout standard output stream

cerr standard error stream

Using I/O streams

• sends data "in the direction of the arrow"

• endl sends '\n' and flushes stream:

– cout << "Student #" << i << endl;

• input with cin: (can also use getline to read entire line)

int age;

cout << "Type your age: ";

cin >> age;

command description

cout << expression output extraction operator; write the value
of expression to standard out

cin >> variable input extraction operator; read from
standard input and store it in variable

Formatting: iomanip

• #include <iomanip>

• formatted output (a la printf)

– setw(n) - set width of next field to be printed

– setprecision(p) - set precision (decimal

places) of next field

– setfill, setbase, ...

– (you can still use printf if you want; often easier)

• cout << "You have " << setw(4) << x <<

" credits." << endl;

Namespaces

• using namespace name;

• namespace: An abstract container for holding a logical grouping

of unique identifiers (names) in a program.

– allows grouping of names, functions, classes

– doesn't exist in C (all functions are global)

– a bit like packages in Java; can be nested

• cin, cout, endl, strings, etc. are all found in namespace std

– can 'use' that namespace to access those identifiers

– or the :: scope resolution operator (also seen in OOP code):

– std::cout << "Hello, world!" << std::endl;

11/30/2009

3

Namespaces, cont'd.

namespace name {

<your code>

}

namespace integermath {

int squared(int x) {

return x * x;

}

}

...

int main(void) {

cout << integermath::squared(7); // 49

}

Functions and parameters

• functions can be overloaded in C++

– two functions with the same name, different parameters

– compares how to polymorphism?

• parameters can have default values (must be the last

param(s))

void printLetter(char letter, int times = 1) {

for (int i = 1; i <= times; i++) {

cout << letter;

}

cout << endl;

}

...

printLetter('*'); // prints 1 star

printLetter('!', 10); // prints 10 !s

References

• type& name = variable;

• reference: A variable that is a direct alias for another variable.

– any changes made to the reference will affect the original

– like pointers, but more constrained and simpler syntax

– an effort to "fix" many problems with C's implementation of

pointers

• Example:
int x = 3;

int& r = x; // now use r just like any int

r++; // r == 4, x == 4

• value on right side of = must be a variable, not an

expression/cast

References vs. pointers

• don't use * and & to reference / dereference (just & at

assignment)

• cannot refer directly to a reference; just refers to what it refers

to

• a reference must be initialized at declaration

– int& r; // error

• a reference cannot be reassigned to refer to something else

int x = 3, y = 5;

int& r = x;

r = y; // sets x == 5, r == 5

• a reference cannot be null, and can only be "invalid" if it refers to

an object/memory that has gone out of scope or was freed

Reference parameters

returntype name(type& name, ...) {

...

}

• client passes parameter using normal syntax

• if function changes parameter's value, client variable

will change

• you almost never want to return a reference

– except in certain cases in OOP

const and references

• const: Constant, cannot be changed.

– used much, much more in C++ than in C

– can have many meanings (const pointer to a const

int?)
void printSquare(const int& i){

i = i * i; // error

cout << i << endl;

}

int main() {

int i = 5;

printSquare(i);

}

11/30/2009

4

Strings

• #include <string>

• C++ actually has a class for strings

– much like Java strings, but mutable (can be

changed)

– not the same as a "literal" or a char*, but can be

implicitly converted

string str1 = "Hello"; // impl. conv.

• Concatenating and operators
string str3 = str1 + str2;

if (str1 == str2) { // compares characters

if (str1 < str3) { // compares by ABC order

char c = str3[0]; // first character

String methods

string s = "Goodbye world!";

s.insert(7, " cruel"); // "Goodbye cruel world!"

method description

append(str) append another string to end of this one

c_str() return a const char* for a C++ string

clear() removes all characters

compare(str) like Java's compareTo

find(str [, index])

rfind(str [, index])

search for index of a substring

insert(index, str) add characters to this string at given index

length() number of characters in string

push_back(ch) adds a character to end of this string

replace(index, len, str) replace given range with new text

substr(start [, len]) substring from given start index

String concatenation

• a string can do + concatenation with a string or char*,

but not with an int or other type:

string s1 = "hello";

string s2 = "there";

s1 = s1 + " " + s2; // ok

s1 = s1 + 42; // error

• to build a string out of many values, use a stringstream

– works like an ostream (cout) but outputs data into a string

– call .str() on stringstream once done to extract it as a string

#include <sstream>

stringstream stream;

stream << s1 << " " << s2 << 42;

s1 = stream.str(); // ok

Libraries

#include <cmath>

library description

cassert assertion functions for testing (assert)

cctype char type functions (isalpha, tolower)

cmath math functions (sqrt, abs, log, cos)

cstdio standard I/O library (fopen, rename, printf)

cstdlib standard functions (rand, exit, malloc)

cstring char* functions (strcpy, strlen)

(not the same as <string>, the string class)

ctime time functions (clock, time)

Arrays

• stack-allocated (same as C):

type name[size];

• heap-allocated:

type* name = new type[size];

– C++ uses new and delete keywords to allocate/free memory

– arrays are still very dumb (don't know size, etc.)

int* nums = new int[10];

for (int i = 0; i < 10; i++) {

nums[i] = i * i;

}

...

delete[] nums;

malloc vs. new

malloc new

place in language a function an operator (and a keyword)

how often used in C often never (not in language)

how often used in C++ rarely frequently

allocates memory for anything arrays, structs, and objects

returns what void*
(requires cast)

appropriate type (no cast)

when out of memory returns NULL throws an exception

deallocating free delete (or delete[])

11/30/2009

5

Exceptions

• exception: An error represented as an object or variable.

– C handles errors by returning error codes

– C++ can also represent errors as exceptions that are thrown

/ caught

• throwing an exception with throw:

double sqrt(double n) {

if (n < 0) {

throw n; // kaboom

}

...

• can throw anything (a string, int, etc.)

• can make an exception class if you want to throw lots of info:
#include <exception>

More about exceptions

• catching an exception with try/catch:
try {

double root = sqrt(x);

} catch (double d) {

cout << d << " can't be squirted!" <<

endl;

}

• throw keyword indicates what exception(s) a method

may throw
– void f() throw(); // none

– void f() throw(int); // may throw ints

• predefined exceptions (from std::exception):
bad_alloc, bad_cast, ios_base::failure,

...

Questions?

CSE303 Au09 27

