
1

CSE 303
Lecture 4

users/groups; permissions; intro to shell scripting

read Linux Pocket Guide pp. 19-20, 25-27,
61-65, 118-119, 176

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Lecture summary
• discuss ethics/society reading #1

• more I/O redirection, piping, combining commands

• user accounts, groups, and the super-user (root)

• file permissions

• introduction to shell scripting

3

Ethics/society reading #1
• What is the difference between "open source" and "free?

• Is it important that we can see the source code?

• Could Microsoft still make any money if they went open source?

• What is a "fork"? Are forks good or bad, and why?

• Is Marty allowed to sell you an Ubuntu CD for $1?

4

Aliases

alias name=command

must wrap the command in quotes if it contains spaces

• Example: When I type q , I want it to log me out of my shell.

• Example: When I type ll , I want it to list all files in long format.
alias q=exit
alias ll="ls -la"

• Exercise : Make it so that typing q quits out of a shell.
• Exercise : Make it so that typing woman runs man.
• Exercise : Make it so that typing attu connects me to attu.
• Exercise : Make it so that typing banner on attu runs banner.

assigns a pseudonym to a commandalias

descriptioncommand

5

Recall: combined commands
command1 > filename

run command1 and write its output to filename instead of to console;

>> appends rather than overwriting if the file already exists

command1 < filename
run command1 and read its input from filename instead of console

command1 | command2
run command1 and send its console output as input to command2

note that console input is not the same thing as parameters!

Example: Find unique lines containing "secret" in all text files.

grep secret *.txt | uniq

6

Commands in sequence
command1 ; command2

run command1 and then command2 afterward (they are not linked)

command1 && command2
run command1, and if it succeeds, runs command2 afterward

will not run command2 if any error occurs during the running of 1

• Example: Make directory songs and move my files into it.
mkdir songs && mv *.mp3 songs

7

More combining commands
command1 `command2`

run command2 and pass its console output to command1 as a
parameter; ` is a back-tick, on the ~ key; not an apostrophe

best used when command2's output is short (one line)

• Example: Create directory "stepp" (when logged in as stepp).
mkdir `whoami`

Why not whoami | mkdir ?

• Example: Display all files that were last modified during this year.
ls -l | grep `date +%G`

8

xargs

• xargs allows you to repeatedly run a command over a set of lines
often used in conjunction with find to process each of a set of files

• Example: Remove all evidence of my BitTorrent transfers.
find ~ -name *.torrent | xargs rm

• Exercise : List in long format all .txt files that contain the text
"303", sorted in reverse alphabetical order.
-rw------- 1 stepp None 30300 Apr 6 10:07 todo.txt
-rw------- 1 stepp None 5434 Apr 6 10:07 ideas.txt

runs each line of its input as a commandxargs

descriptioncommand

9

Users
Unix/Linux is a multi-user operating system.

• Every program/process is run by a user.

• Every file is owned by a user.

• Every user has a unique integer ID number (UID).

• Different users have different access permissions, allowing user to:
read or write a given file
browse the contents of a directory
execute a particular program
install new software on the system
change global system settings
...

10

Groups

• group: A collection of users, used as a target of permissions.
a group can be given access to a file or resource

a user can belong to many groups

• Every file has an associated group.
the owner of a file can grant permissions to the group

• Every group has a unique integer ID number (GID).

change the group associated with a filechgrp

list the groups to which a user belongsgroups

descriptioncommand

11

File permissions

• types : read (r), write (w), execute (x)
• people : owner (u), group (g), others (o)

on Windows, .exe files are executable programs;
on Linux, any file with x permission can be executed

permissions are shown when you type ls -l
is it a directory?

owner
group

others

drwxrwxrwx

set default permissions for new filesumask

change permissions for a filechmod

descriptioncommand

12

Changing permissions
• letter codes: chmod who(+-)what filename

chmod u+rw myfile.txt (allow owner to read/write)

chmod +x banner (allow everyone to execute)

chmod ug+rw,o-rwx grades.xls (owner/group can read and

write; others nothing)

• octal (base-8) codes: chmod NNN filename
three numbers between 0-7, for owner (u), group (g), and others (o)

each gets +4 to allow read, +2 for write, and +1 for execute

chmod 600 myfile.txt (owner can read/write (rw))

chmod 664 grades.dat (owner rw; group rw; other r)

chmod 751 banner (owner rwx; group rx; other x)

13

Super-user (root)

• super-user: An account used for system administration.
has full privileges on the system http://xkcd.com/149/

usually represented as a user named root

• Most users have more limited permissions than root
protects system from viruses, rogue users, etc.

• Example: Install the sun-java6-jdk package on Ubuntu.
sudo apt-get install sun-java6-jdk

start a shell with root privileges (so multiple commands can be run)su

run a single command with root privileges (prompts for password)sudo

descriptioncommand

14

Shell scripts
• script: A short program whose purpose is to run other programs.

a series of commands combined into one executable file

• shell script: A script that is executed by a command-line shell.
bash (like most shells) has syntax for writing script programs

• To write a bash script (in brief):
type one or more commands into a file; save it

type a special header in the file to identify it as a script (next slide)

enable execute permission on the file

run it!

15

Basic script syntax
#!interpreter

written as the first line of an executable script; causes a file to be
treated as a script to be run by the given interpreter

• (we will use /bin/bash as our interpreter)

• Example: A script that removes some files and then lists all files:

#!/bin/bash
rm output*.txt
ls -l

16

Running a shell script
• by making it executable (most common):

chmod u+x myscript.sh
./myscript.sh

• by launching a new shell:
bash myscript.sh

• by running it within the current shell:
source myscript.sh

advantage: any variables defined by the script remain in this shell
(seen later)

17

.bash_profile
• every time you log in to bash, it runs the file ~/.bash_profile

you can put any common startup commands you want into this file

useful for setting up aliases and other settings

• Exercise : Make it so that our q and L aliases from earlier become
persistent, so that they will work every time we run a shell.

• Exercise : Make it so that whenever you try to delete or overwrite a
file during a move/copy, you will be prompted for confirmation first.

18

echo

• Example: A script that prints the time and your home directory.

#!/bin/bash
echo "This is my amazing script!"
echo "Your home dir is: `pwd`"

• Exercise : Make it so that whenever I log in to attu, it:
clears the screen

displays the current date: The time is: 04/06 10:40
shows me an ASCII cow welcoming my user name

produces its parameter(s) as output
(the println of shell scripting)

echo

descriptioncommand

