
1

CSE 303
Lecture 11

Heap memory allocation (malloc, free)

reading: Programming in C Ch. 11, 17

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Lecture summary
• arrays as parameters and returns

arrays vs. pointers

• the heap
dynamic memory allocation (malloc, calloc, free)

memory leaks and corruption

3

Process memory layout
• as functions are called,

data goes on a stack

• dynamic data is
created on a heap

code instructions
("text segment")

global/static variables
("data segment")

heap
(dynamically allocated data)

available memory

stack
(function calls)

0x00000000

0xFFFFFFFF

address
space

4

The sizeof operator
#include <stdio.h>

int main(void) {
int x;
int a[5];

printf("int=%d, double=%d\n", sizeof(int), sizeof(double));
printf("x uses %d bytes\n", sizeof(x));
printf("a uses %d bytes\n", sizeof(a));
printf("a[0] uses %d bytes\n", sizeof(a[0]));
return 0;

}

Output:
int=4, double=8
x uses 4 bytes
a uses 20 bytes
a[0] uses 4 bytes

5

sizeof continued
• sizeof(type) or (variable) returns memory size in bytes

arrays passed as parameters do not remember their size

#include <stdio.h>

void f(int a[]);

int main(void) {
int a[5];
printf("a uses %d bytes\n", sizeof(a));
f(a);
return 0;

}

void f(int a[]) {
printf("a uses %2d bytes in f\n", sizeof(a));

}
Output:

a uses 20 bytes
a uses 4 bytes in f

6

Arrays and pointers
• a pointer can point to an array element

an array's name can be used as a pointer to its first element
you can use [] notation to treat a pointer like an array
•pointer[i] is i elements' worth of bytes forward from pointer

int a[5] = {10, 20, 30, 40, 50};

int* p1 = &a[3]; // refers to a's fourth element
int* p2 = &a[0]; // refers to a's first element
int* p3 = a; // refers to a's first element as well

*p1 = 100;
*p2 = 200;
p1[1] = 300;
p2[1] = 400;
p3[2] = 500;

Final array contents:
{200, 400, 500, 100, 300}

7

Arrays as parameters
• array parameters are really passed as pointers to the first element

The [] syntax on parameters is allowed only as a convenience

// actual code:
#include <stdio.h>

void f(int a[]);

int main(void) {
int a[5];
...
f(a);
return 0;

}

void f(int a[]) {
...

}

// equivalent to:
#include <stdio.h>

void f(int* a);

int main(void) {
int a[5];
...
f(&a[0]);
return 0;

}

void f(int* a) {
...

}

8

Returning an array
• stack-allocated variables disappear at the end of the function

this means an array cannot be safely returned from a method

int[] copy(int a[], int size);

int main(void) {
int nums[4] = {7, 4, 3, 5};
int nums2[4] = copy(nums, 4); // no
return 0;

}

int[] copy(int a[], int size) {
int i;
int a2[size];
for (i = 0; i < size; i++) {

a2[i] = a[i];
}
return a2; // no

}

code
global data

heap

available

main
nums, nums2

copy
a, size
a2, i

9

Pointers don't help
• dangling pointer: One that points to an invalid memory location.

int* copy(int a[], int size);

int main(void) {
int nums[4] = {7, 4, 3, 5};
int* nums2 = copy(nums, 4);
// nums2 dangling here
...

}

int* copy(int a[], int size) {
int i;
int a2[size];
for (i = 0; i < size; i++) {

a2[i] = a[i];
}
return a2;

}
code

global data

heap

available

main
nums

nums2

copy

a size

a2 i5347

5347

4

10

Our conundrum
• We'd like to have data in our C programs that is:

dynamic (size of array changes based on user input, etc.)

long-lived (doesn't disappear after the function is over)

bigger (the stack can't hold all that much data)

• Currently, our solutions include:
declaring variables in main and passing as "output parameters"

declaring global variables (do not want)

11

The heap
• heap (or "free store"): large pool of unused memory that you can

use for dynamically allocating data and objects
for dynamic, long-lived, large data

many languages (e.g. Java) place
all arrays/ objects on the heap

// Java
int[] a = new int[5];
Point p = new Point(8, 2);

code
global data

heap

available

stack

a

p

0 50000

2 methods8

0x00FD8000

0x00FD30F0

0x00FD8000

0x00FD30F0

0x086D0008

0x086D0004

12

malloc
variable = (type*) malloc(size);

• malloc function allocates a heap memory block of a given size
returns a pointer to the first byte of that memory
you should cast the returned pointer to the appropriate type
initially the memory contains garbage data
often used with sizeof to allocate memory for a given data type

// int a[8]; <-- stack equivalent

int* a = (int*) malloc(8 * sizeof(int));
a[0] = 10;
a[1] = 20;
...

13

calloc
variable = (type*) calloc(count, size);

• calloc function is like malloc, but it zeros out the memory
also takes two parameters, number of elements and size of each
preferred over malloc for avoiding bugs (but slightly slower)

// int a[8] = {0}; <-- stack equivalent
int* a = (int*) calloc(8, sizeof(int));

• malloc and calloc are found in library stdlib.h
#include <stdlib.h>

14

Returning a heap array
• when you want to return an array, malloc it and return a pointer

array will live on after the function returns

int* copy(int a[], int size);

int main(void) {
int nums[4] = {7, 4, 3, 5};
int* nums2 = copy(nums, 4);
...
return 0;

}

int* copy(int a[], int size) {
int i;
int* a2 = malloc(size * sizeof(int));
for (i = 0; i < size; i++) {

a2[i] = a[i];
}
return a2;

}
code

global data

heap

available

main
nums

nums2

copy
a size

a2 i

5347

5347

4

15

NULL
• NULL: An invalid memory location that cannot be accessed.

in C, NULL is a global constant whose value is 0

if you malloc/calloc but have no memory free, it returns NULL
you can initialize a pointer to NULL if it has no meaningful value

dereferencing a null pointer will crash your program

int* p = NULL;
*p = 42; // segfault

• Exercise : Write a program that figures out how large the stack and
heap are for a default C program.

16

Deallocating memory
• heap memory stays claimed until the end of your program

• garbage collector: A process that automatically reclaims memory
that is no longer in use.

keeps track of which variables point to which memory, etc.

used in Java and many other modern languages; not in C

// Java
public static int[] f() {

int[] a = new int[1000];
int[] a2 = new int[1000];
return a2;

} // no variables refer to a here; can be freed

17

Memory leaks
• memory leak: Failure to release memory when no longer needed.

easy to do in C

can be a problem if your program will run for a long time
• when your program exits, all of its memory is returned to the OS

void f(void) {
int* a = (int*) calloc(1000, sizeof(int));
...

} // oops; the memory for a is now lost

18

free
free(pointer);

• releases the memory pointed to by the given pointer
precondition: pointer must refer to a heap-allocated memory block
that has not already been freed

int* a = (int*) calloc(8, sizeof(int));
...
free(a);

it is considered good practice to set a pointer to NULL after freeing

free(a);
a = NULL;

19

Memory corruption
• if the pointer passed to free doesn't point to a heap-allocated

block, or if that block has already been freed, bad things happen

int* a1 = (int*) calloc(1000, sizeof(int));
int a2[1000];
int* a3;
int* a4 = NULL;

free(a1); // ok
free(a1); // bad (already freed)
free(a2); // bad (not heap allocated)
free(a3); // bad (not heap allocated)
free(a4); // bad (not heap allocated)

• you're lucky if it crashes, rather than silently corrupting something

