
1

CSE 303
Lecture 12

structured data

reading: Programming in C Ch. 9

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Lecture summary
• structured data

struct, typedef

structs as parameters/returns

arrays of structs

• linked data structures
stacks

linked lists

3

Structured data
struct typename { // declaring a struct type

type name;
type name;
...
type name; // fields

};

• struct: A type that stores a collection of variables.
like a Java class, but with only fields (no methods or constructors)

instances can be allocated on the stack or on the heap

struct Point { // defines a new structured
int x, y; // type named Point

};

4

Using structs
• a struct instance is declared by writing the type, name, and ;

this allocates an instance of the structured type on the stack

refer to the fields of a struct using the . operator

struct Point {
int x, y;

};

int main(void) {
struct Point p1; // on stack
struct Point p2 = {42, 3}; // initialized
p1.x = 15;
p1.y = -2;
printf("p1 is (%d, %d)\n", p1.x, p1.y);
return 0;

}

5

typedef
typedef type name;

tell C to acknowledge your struct type's name with typedef

typedef struct Point {
int x, y;

} Point;

int main(void) {
Point p1; // don't need to write 'struct'
p1.x = 15;
p1.y = -2;
printf("p1 is (%d, %d)\n", p1.x, p1.y);
return 0;

}

6

Structs as parameters
• when you pass a struct as a parameter, it is copied

not passed by reference as in Java

void swapXY(Point p1);

int main(void) {
Point p = {10, 20};
swapXY(p);
printf("(%d, %d)\n", p.x, p.y);
return 0; // prints (10, 20)

}

void swapXY(Point a) {
int temp = a.x;
a.x = a.y;
a.y = temp; // does not work

}

code
global data

heap

available

main
p 10 20

swapXY
a 20 10

7

Pointers to structs
• structs can be passed by reference using pointers

must use parentheses when dereferencing a struct* (precedence)

void swapXY(Point* p1);

int main(void) {
Point p = {10, 20};
swapXY(&p);
printf("(%d, %d)\n", p.x, p.y);
return 0; // prints (20, 10)

}

void swapXY(Point* a) {
int temp = (*a).x;
(*a).x = (*a).y;
(*a).y = temp;

}

code
global data

heap

available

main
p 10 20

swapXY
a

20 10

8

The -> operator
• more often, we allocate structs on the heap and pass pointers

pointer->field is equivalent to (*pointer).field

void swapXY(Point* p1);

int main(void) {
Point* p = (Point*) malloc(sizeof(Point));
p->x = 10;
p->y = 20;
swapXY(p);
printf("(%d, %d)\n", p->x, p->y); // (20, 10)
return 0;

}

void swapXY(Point* a) {
int temp = a->x;
a->x = a->y;
a->y = temp;

}

9

Copy by assignment
• one structure's entire contents can be copied to another with =

struct2 = struct1; // copies the memory

int main(void) {
Point p1 = {10, 20}, p2 = {30, 40};
p1 = p2;
printf("(%d, %d)\n", p1.x, p1.y); // (30, 40)

// is this the same as p1 = p2; above?
Point* p3 = (Point*) malloc(sizeof(Point));
Point* p4 = (Point*) malloc(sizeof(Point));
p3->x = 70;
p3->y = 80;
p3 = p4;
printf("(%d, %d)\n", p3->x, p3->y);

return 0;
}

10

Struct literals
• a structure can be assigned a state later using a struct literal:

name = (type) {value, ..., value};

int main(void) {
Point p1 = {10, 20}, p2 = {30, 40};
p1 = p2;
printf("(%d, %d)\n", p1.x, p1.y); // (30, 40)

// is this the same as p1 = p2; above?
Point* p3 = (Point*) malloc(sizeof(Point));
Point* p4 = (Point*) malloc(sizeof(Point));
*p3 = (Point) {70, 80};
p3 = p4;
printf("(%d, %d)\n", p3->x, p3->y);

return 0;
}

11

Struct as return value
• we generally pass/return structs as pointers

faster; takes less memory than copying the struct onto the stack

if a struct is malloced and returned as a pointer, caller must free it

int main(void) {
Point* p1 = new_Point(10, 20);
...
free(p1);
return 0;

}
// creates/returns a Point; sort of a constructor
Point* new_Point(int x, int y) {

Point* p = (Point*) malloc(sizeof(Point));
p->x = x;
p->y = y;
return p; // caller must free p later

}

12

Comparing structs
• relational operators (==, !=, <, >, <=, >=) don't work with structs

Point p1 = {10, 20};
Point p2 = {10, 20};
if (p1 == p2) { ... // error

• what about this?

Point* p1 = new_Point(10, 20);
Point* p2 = new_Point(10, 20);
if (p1 == p2) { ... // true or false?

13

Comparing structs, cont'd
• the right way to compare two structs: write your own

#include <stdbool.h>

bool point_equals(Point* a, Point* b) {
if (a->x == b->x && a->y == b->y) {

return true;
} else {

return false;
}

}

int main(void) {
Point p1 = {10, 20};
Point p2 = {10, 20};
if (point_equals(&p1, &p2)) { ...

14

Structs and input
• you can create a pointer to a field of a struct

structs' members can be used as the target of a scanf read, etc.

int main(void) {
Point p;
printf("Please type your x/y position: ");
scanf("%d %d", &p.x, &p.y);
return 0;

}

int main(void) {
Point* p = (Point*) malloc(sizeof(Point));
printf("Please type your x/y position: ");
scanf("%d %d", &p->x, &p->y);
return 0;

}

15

Arrays of structs
• parallel arrays: ≥ 2 arrays conceptually linked by index.

parallel arrays are bad design; isn't clear that they are related

you should often replace such arrays with an array of structs

int id[50]; // parallel arrays to store
int year[50]; // student data (bad)
double gpa[50];

typedef struct Student { // one array of structs
int id, year;
double gpa;

} Student;
...

Student students[50];

16

Structs with pointers
• What if we want a Student to store a significant other?

typedef struct Student { // incorrect
int id, year;
double gpa;
struct Student sigother;

} Student;

• a Student cannot fit another entire Student inside of it!

typedef struct Student { // correct
int id, year;
double gpa;
struct Student* sigother;

} Student;

17

Linked data structures
• C does not include collections like Java's ArrayList, HashMap

must build any needed data structures manually

to build a linked list structure, create a chain of structs/pointers

typedef struct Node {
int data;
struct Node* next;

} Node;

Node* front = ...;

10

nextdata
NULL990

nextdata
front

...20

nextdata

18

Manipulating a linked list
• there is only a node type (struct), no overall list class

• list methods become functions that accept a front node pointer:

int list_length(Node* front) {
Node* current = front;
int count = 0;
while (current != NULL) {

count++;
current = current->next;

}
return count;

}

10

nextdata
NULL30

nextdata
front

20

nextdata

19

Exercise
• Write a complete C program that allows the user to create a basic

stack of ints. The user should be able to:
push : put a new int onto the top of the stack.

pop : remove the top int from the stack and print it.

clear : remove all ints from the stack.

• Do not make any assumptions about the size of the stack.
Do not allow any memory leaks in your program.

