
1

CSE 303
Lecture 17

Makefiles

reading: Programming in C Ch. 15

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

The compilation process
• What happens when you compile a Java program?

$ javac Example.java

Example.java is compiled to create Example.class

• But...
what if you compile it again?

what if Example.java uses Point objects from Point.java?

what if Point.java is changed but not recompiled, and then we try
to recompile Example.java?

3

Compiling large programs
• compiling multi-file programs repeatedly is cumbersome:

$ gcc -g -Wall -o myprogram file1.c file2.c file3.c

• retyping the above command is wasteful:
for the developer (so much typing)

for the compiler (may not need to recompile all; save them as .o)

• improvements:
use up-arrow or history to re-type compilation command for you

use an alias or shell script to recompile everything

use a system for compilation/build management, such as make

4

Dependencies
• dependency : When a file relies on the contents of another.

can be displayed as a dependency graph
to build main.o, we need data.h, main.c, and io.h
if any of those files is updated, we must rebuild main.o
if main.o is updated, we must update project1

5

make
• make : A utility for automatically compiling ("building") executables

and libraries from source code.
a very basic compilation manager

often used for C programs, but not language-specific

primitive, but still widely used due to familiarity, simplicity

similar programs: ant, maven, IDEs (Eclipse), ...

• Makefile : A script file that defines rules for what must be compiled
and how to compile it.

Makefiles describe which files depend on which others, and how to
create / compile / build / update each file in the system as needed.

6

make demo
• figlet : program for displaying large ASCII text (like banner).

http://sourceforge.net/projects/freshmeat_figlet/

• Let's download a piece of software and compile it with make:
download .tar.gz file

un-tar it

(optional) look at README file to see how to compile it

(sometimes) run ./configure
• for cross-platform programs; sets up make for our operating system

run make to compile the program

execute the program

7

Makefile rule syntax
target : source1 source2 ... sourceN

command
command
...

Example:

myprogram : file1.c file2.c file3.c
gcc -o myprogram file1.c file2.c file3.c

The command line must be indented by a single tab

• not by spaces; NOT BY SPACES! SPACES WILL NOT WORK!

8

Running make
$ make target

uses the file named Makefile in current directory

finds rule in Makefile for building target and follows it
• if the target file does not exist, or if it is older than any of its sources,

its commands will be executed

• variations:

$ make
builds the first target in the Makefile

$ make -f makefilename
$ make -f makefilename target

uses a makefile other than Makefile

9

Rules with no sources
myprog: file1.o file2.o file3.o

gcc -g -Wall -o myprog file1.o file2.o file3.o

clean:
rm file1.o file2.o file3.o myprog

• make assumes that a rule's command will build/create its target
but if your rule does not actually create its target, the target will still
not exist the next time, so the rule will always execute (clean above)

make clean is a convention for removing all compiled files

10

Rules with no commands
all: myprog myprog2

myprog: file1.o file2.o file3.o
gcc -g -Wall -o myprog file1.o file2.o file3.o

myprog2: file4.c
gcc -g -Wall -o myprog2 file4.c

...

• all rule has no commands, but depends on myprog and myprog2
typing make all will ensure that myprog, myprog2 are up to date

all rule often put first, so that typing make will build everything

11

Variables
NAME = value (declare)
$(NAME) (use)

OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog

$(PROGRAM): $(OBJFILES)
gcc -g -Wall -o $(PROGRAM) $(OBJFILES)

clean:
rm $(OBJFILES) $(PROGRAM)

• variables make it easier to change one option throughout the file
also makes the makefile more reusable for another project

12

More variables
OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog
ifdef WINDIR # assume it's a Windows box

PROGRAM = myprog.exe
endif
CC = gcc
CCFLAGS = -g -Wall

$(PROGRAM): $(OBJFILES)
$(CC) $(CCFLAGS) -o $(PROGRAM) $(OBJFILES)

• variables can be conditional (ifdef above)

• many makefiles create variables for the compiler, flags, etc.
this can be overkill, but you will see it "out there"

13

Special variables
$@ the current target file

$^ all sources listed for the current target

$< the first (left-most) source for the current target

(there are other special variables)

myprog: file1.o file2.o file3.o
gcc $(CCFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h
gcc $(CCFLAGS) -c $<

14

Auto-conversions
• rather than specifying individually how to convert every .c file into

its corresponding .o file, you can set up an implicit target:

conversion from .c to .o
.c.o:

gcc $(CCFLAGS) -c $<

"To create filename.o from filename.c, run gcc -g -Wall -c filename.c"

• for making an executable (no extension), simply write .c :
.c:

gcc $(CCFLAGS) -o $@ $<

related rule: .SUFFIXES (what extensions can be used)

15

Dependency generation
• You can make gcc figure out dependencies for you:

$ gcc -M filename
instead of compiling, outputs a list of dependencies for the given file

$ gcc -MM filename
similar to -M, but omits any internal system libraries (preferred)

• Example:
$ gcc -MM linkedlist.c
linkedlist.o: linkedlist.c linkedlist.h util.h

related command: makedepend

