
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 13— C: post-overview, function pointers

CSE 303 Winter 2009, Lecture 13 1



'

&

$

%

Where are We

Today:

• Top-down view of C

• Function pointers (lite, if time. . . )

Later:

• Using function pointers more like objects

CSE 303 Winter 2009, Lecture 13 2



'

&

$

%

Top-down post-overview

Now that we have seen most of C, let’s summarize/organize:

• Preprocessing (text replacement; common conventions)

– #include for declarations defined elsewhere

– #ifdef for conditional compilation

– #define for token-based textual substitution

• Compiling (type-checking and code-generating)

– A sequence of declarations

– Each C file becomes a .o file

• Linking (more later)

– Take .o and .a files and make a program

– libc.a in by default, has printf, malloc, ...

• Executing (next slide)

CSE 303 Winter 2009, Lecture 13 3



'

&

$

%

Execution

• O/S maintains the “big array” address-space illusion

• Execution starts at main

• Each stack-frame has space for arguments, locals, and

return-address (last one shouldn’t be visible to you)

• Library manages the heap via malloc/free

CSE 303 Winter 2009, Lecture 13 4



'

&

$

%

C, the language

• A file is a sequence of declarations:

– Global variables (t x; or t x = e;)

– struct (and union and enum) definitions

– Function prototypes (t f(t1,...,tn);)

– Function definitions

– typedefs

• A function body is a statement

– Statements are much like in Java (+ goto, – exception

handling, ints for bools, ...)

– Local declarations have local scope (stack space).

• Left-expressions (locations) and right-expressions (values,

including pointers-to-locations)

– * for pointer dereference, & for address-of, . for field access

CSE 303 Winter 2009, Lecture 13 5



'

&

$

%

C language continued

“Convenient” expression forms:

• e->f means (*e).f

• e1[e2] means *(e1 + e2)

– But + for pointer arithmetic takes the size of the pointed to

element into account!

– That is, if e1 has type t* and e2 has type int, then , then

(e1 + c) == (((int)e1) + (sizeof(t) * c))

– The compiler “does the sizeof for you” – don’t double-do it!

“Size is exposed”: In Java, “(just about) everything is 32 bits”. In C,

pointers are usually the same size as other pointers, but not everything

is a pointer.

New side point: padding, alignment may mean structs are “bigger

than expected”

CSE 303 Winter 2009, Lecture 13 6



'

&

$

%

C is unsafe

The following is allowed to do anything to your program (delete files,

launch viruses, silently turn a 3 into a 2, ...)

array-bounds violation (bad pointer arithmetic), dangling-pointer

dereferences (including double-frees), dereferencing NULL, using

results of wrong casts, using contents of uninitialized locations, linking

errors (inconsistent assumptions), ...

Pointer casts are not checked (no secret fields at run-time; all bits look

the same)

Often crashing is a “good thing” compared to continuing silently with

meaningless data.

CSE 303 Winter 2009, Lecture 13 7



'

&

$

%

Now

C is a pretty small language, but we still skipped lots of features.

For now, one idiom (returning error codes) and one useful feature

(function pointers).

CSE 303 Winter 2009, Lecture 13 8



'

&

$

%

Error codes

Without exceptions, how can a callee indicate it could not do its job?

• Through the return value; caller must remember to check

Examples:

• fopen may return NULL

– f=fopen("someFile","r"); if(!f) ...

• scanf returns number of matched arguments

– cnt=scanf("%d:%d:%d",&h,&m,&s); if(cnt!=3) ...

• Often assign “real results” through pointer-arguments and result

is 0 for success and other values for errors (like in bash)

– if(!someCall(&realAns,arg1,args)) ...

CSE 303 Winter 2009, Lecture 13 9



'

&

$

%

Function pointers

“Pointers to code” are almost as useful as “pointers to data”.

(But the syntax is more painful.)

(Somewhat silly) example:

void app_arr(int len, int * arr, int (*f)(int)) {

for(; len > 0; --len)

arr[len-1] = (*f)(arr[len-1]);

}

int twoX(int i) { return 2*i; }

int sq(int i) { return i*i; }

void twoXarr(int len, int* arr) { app_arr(len,arr,&twoX); }

void sq_arr(int len, int* arr) { app_arr(len,arr,&sq); }

CSE 341 spends a week on why function pointers are so useful; today

is mostly just how in C.

CSE 303 Winter 2009, Lecture 13 10



'

&

$

%

Function pointers, cont’d

Key computer-science idea: You can pass what code to execute as an

argument, just like you pass what data to process as an argument.

Java: An object is (a pointer to) code and data, so you’re doing both

all the time.

// Java

interface I { int m(int i); }

void f(int arr[], I obj) {

for(int len=arr.length; len > 0; --len)

arr[len-1] = obj.m(arr[len-1]);

}

The m method of an I can have access to data (in fields).

C separates the concepts of code, data, and pointers.

CSE 303 Winter 2009, Lecture 13 11



'

&

$

%

C function-pointer syntax

C syntax: painful and confusing. Rough idea: The compiler “knows”

what is code and what is a pointer to code, so you can write less than

we did on the last slide:

arr[len-1] = (*f)(arr[len-1]);

→ arr[len-1] = f(arr[len-1]);

app_arr(len,arr,&twoX);

→ app_arr(len,arr,twoX);

For types, let’s pretend you always have to write the “pointer to code”

part (i.e., t0 (*)(t1,t2,...,tn)) and for declarations the variable

or field name goes after the *.

Sigh.

CSE 303 Winter 2009, Lecture 13 12


