
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 22— Shared-Memory Concurrency

CSE 303 Winter 2009, Lecture 22 1

'

&

$

%

Concurrency

Computation where “multiple things happen at the same time” is

inherently more complicated than sequential computation.

• Entirely new kinds of bugs and obligations

Two forms of concurrency:

• time-slicing : only one computation at a time but pre-empt to

provide responsiveness or mask I/O latency.

• true parallelism: more than one CPU (e.g., the lab machines have

two, the attu machines have 4, your laptop has ?, . . .)

No problem unless the different computations need to communicate or

use the same resources.

CSE 303 Winter 2009, Lecture 22 2

'

&

$

%

Example: Processes

The O/S runs multiple processes “at once”.

Why? (Convenience, efficient use of resources, performance)

No problem: keep their address-spaces separate.

But they do communicate/share via files (and pipes).

Things can go wrong, e.g., a race condition:

echo "hi" > someFile

foo=‘cat someFile‘

assume foo holds the string hi??

The O/S provides synchronization mechanisms to avoid this

• See CSE451; we will focus on intraprocess concurrency.

CSE 303 Winter 2009, Lecture 22 3

'

&

$

%

The Old Story

We said a running Java or C program had code, a heap, global

variables, a stack, and “what is executing right now” (in assembly, a

program counter).

C, Java support parallelism similarly (other languages can be different):

• One pile of code, global variables, and heap.

• Multiple “stack + program counter”s — called threads

• Threads can be pre-empted whenever by a scheduler

• Threads can communicate (or mess each other up) via shared

memory.

• Various synchronization mechanisms control what thread

interleavings are possible.

– “Do not do your thing until I am done with my thing”

CSE 303 Winter 2009, Lecture 22 4

'

&

$

%

Basics

C: The POSIX Threads (pthreads) library

• #include <pthread.h>

• Link with -lpthread

• pthread_create takes a function pointer and an argument for it;

runs it as a separate thread.

• Many types, functions, and macros for threads, locks, etc.

Java: Built into the language

• Subclass java.lang.Thread overriding run

• Create a Thread object and call its start method

• Any object can “be synchronized on” (later)

CSE 303 Winter 2009, Lecture 22 5

'

&

$

%

Why do this?

• Convenient structure of code

– Example: 2 threads using information computed by the other

– Example: Failure-isolation – each “file request” in its own

thread so if a problem just “kill that request”.

– Example: Fairness – one slow computation only takes some of

the CPU time without your own complicated timer code.

Avoids starvation.

• Performance

– Run other threads while one is reading/writing to disk (or

other slow thing that can happen in parallel)

– Use more than one CPU at the same time

∗ The way computers will get faster over the next 10 years

∗ So no parallelism means no faster.

CSE 303 Winter 2009, Lecture 22 6

'

&

$

%

Simple synchronization

If one thread did nothing of interest to any other thread, why is it

running?

So threads have to communicate and coordinate.

• Use each others’ results; avoid messing up each other’s

computation.

Simplest two ways not to mess each other up (don’t underestimate!):

1. Do not access the same memory.

2. Do not mutate shared memory.

Next simplest: One thread does not run until/unless another thread is

done

• Called a join

CSE 303 Winter 2009, Lecture 22 7

'

&

$

%

Using Parallel Threads

• A common pattern for expensive computations:

– Split the work

– Join on all the helper threads

– Called fork-join parallelism

• To avoid bottlenecks, each thread should have about the same

amount of work (load-balancing)

– Performance depends on number of CPUs available and will

typically be less than “perfect speedup”

• C vs. Java (specific to threads)

– Java takes an OO approach (shared data via fields of Thread)

– Java separates creating the Thread-object and creating the

running-thread

CSE 303 Winter 2009, Lecture 22 8

'

&

$

%

Less structure

Often you have a bunch of threads running at once and they might

need the same mutable memory at the same time but probably not.

Want to be correct without sacrificing parallelism.

Example: A bunch of threads processing bank transactions:

• withdraw, deposit, transfer, currentBalance, ...

• chance of two threads accessing the same account at the same

time very low, but not zero.

• want mutual exclusion (a way to keep each other out of the way

when there is contention)

Another example: Parallel search through an arbitrary graph

CSE 303 Winter 2009, Lecture 22 9

'

&

$

%

The Issue

struct Acct { int balance; /* ... other fields ... */ };

int withdraw(struct Acct * a, int amt) {

if(a->balance < amt) return 1; // 1==failure

a->balance -= amt;

return 0; // 0==success

}

This code is correct in a sequential program.

It may have a race condition in a concurrent program, allowing a

negative balance.

Discovering this bug is very hard with testing since the interleaving has

to be “just wrong”.

CSE 303 Winter 2009, Lecture 22 10

'

&

$

%

atomic
Programmers must indicate what must appear to happen all-at-once.

int withdraw(struct Acct * a, int amt) {

atomic {

if(a->balance < amt) return 1; // 1==failure

a->balance -= amt;

}

return 0; // 0==success

}

Reasons not to do “too much” in an atomic:

• Correctness: If another threads needs an intermediate result to

compute something you need, must “expose” it.

• Performance: Parallel threads must access disjoint memory

– Actually read/read conflicts can happen in parallel

CSE 303 Winter 2009, Lecture 22 11

'

&

$

%

Getting it “just right”

This code is probably wrong because critical sections too small:

atomic { if(a->balance < amt) return 1; }

atomic { a->balance -= amt; }

This code (skeleton) is probably wrong because critical section too big:

• Assume other guy does not compute until the data is set.

atomic {

data_for_other_guy = 42; // set some global

ans = wait_for_other_guy_to_compute();

return ans;

}

CSE 303 Winter 2009, Lecture 22 12

'

&

$

%

So far

Shared-memory concurrency where multiple threads might access the

same mutable data at the same time is tricky

• Must get size of critical sections just right

It’s worse because

• atomic does not yet exist in languages like C and Java

• (Major thread of programming language research at UW.)

Instead programmers must use locks (a.k.a. mutexes) or other

mechanisms, usually to get the behavior of critical sections

• But misuse of locks will violate the “all-at-once” property

• Or lead to other bugs we haven’t seen yet

CSE 303 Winter 2009, Lecture 22 13

