CSE 303: Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 5— Regular Expressions (and more), grep, other utilities

Where are We

- We are done learning this bizarre pseudo-programming language called the shell (pick up more for hw2).
- Today: Specifying string patterns for many utilities, particularly grep and sed (also needed for hw2).
 - find vs. find-and-replace
- Next: sed
- And then: We start learning C.

Globbing vs. Regular Expressions vs. . . .

"Globbing" refers to filename expansion characters.

"Regular expressions" are a different but overlapping set of rules for specifying patterns to programs like grep. (Sometimes called "pattern matching".)

More distinctions:

- Regular expressions a la CSE322
- "Regular expressions" in grep
- "Regular expressions" in egrep (same as grep −E)
- More subtle distinctions per program...

Real Regular Expressions

Some of the crispest, elegant, most useful CS theory out there.

What computer scientists know and ill-educated hackers don't (to their detriment).

A regular expression p may "match" a string s. If p=

- a, b, ... matches the single character
- $ullet p_1p_2$, ... if we can write s as s_1s_2 , p_1 matches s_1 , p_2 matches s_2 .
- ullet $p_1|p_2,\ldots$ if p_1 matches s or p_2 matches s (in egrep, for grep use \|)
- p_1* , if there is an $i\geq 0$ such that $\underbrace{p_1\ldots p_1}_i$ matches s. (for i=0, matches the zero-character string).

Lots of examples with egrep.

Why this language?

Amazing facts (see 322):

- Exactly the patterns that can be found by a program that can say before it sees its input how much space it needs. (Decide if a 1GB string has a substring that matches...)
- You can write a program that takes two regular expressions and decides if one matches every string the other does.
- ...see CSE322

Conveniences

Lots of "conveniences" do not make the language any more powerful:

- p_1+ is just p_1p_1*
- p_1 ? is just $(\epsilon|p_1)$
- [zd-h] is just z | d | e | f | g | h
- [^A-Z] and . are long but technically just conveniences.
- $ullet p_1\{n\}$ is just $\underbrace{p_1\dots p_1}_n$
- $ullet p_1\{n,\}$ is just $\underbrace{p_1\dots p_1}_n p_1 *$
- $ullet p_1\{n,m\}$ is just $\underbrace{p_1\dots p_1}_n\underbrace{p_1?\dots p_1?}_{m-n}$

Beginning and end

Really grep is matching each line against .*p.*.

You can say that is not what you want with ^ (beginning) and \$ (end) or both (match whole line exactly).

I can't think of a good reason to put these characters in the middle of a pattern, but you can.

Fundamentally, we are still in the realm of "real" regular expressions.

Nasty gotchas

- Special characters for one program not special for another.
- For example, \{ for grep but \{ for egrep.
- Must quote your patterns so the shell does not muck with them –
 and use single quotes if they contain \$.
- Must escape special characters with \ if you need them literally:
 \ . and . are very different.
 - But inside [] less quoting (so backslash becomes literal)!

Previous matches

- Up to 9 times in a pattern, you can group with (p) and refer to the matched text later! (Need backslashes in sed.)
- ullet You can refer to the text (most recently) matched by the n^{th} one with \n .
- Simple example: double-words ^\([a-zA-Z]*\)\1\$
- You *cannot* do this with regular expressions; the program must keep the previous strings.
 - Especially useful with sed because of substitutions.

Other Utilities

Some very useful programs you can learn on your own:

find (search for files, e.g., find /usr -name words)

diff (compare two files' contents, output is easy for humans and programs to read (see all patch))

Also:

For many programs the -r flag makes them *recursive* (apply to all files, subdirectories, subsubdirectories, . . .).

So "delete everything on the computer" is cd /; rm -rf * (be careful!)