What's on today's menu?

\downarrow Wrap up of Proof Techniques

- Review of Chapter 1
- Introduction to Sets

Existence Proofs

Constructive Existence Proof

\rightarrow Goal: Prove $\exists x \mathrm{P}(x)$
Constructive proof method: Construct an a such that $\mathrm{P}(a)$ true
Example: Prove that there exist nonzero integers x, y, z such that $x^{2}+y^{2}=z^{2}$.

Proof: Let $x=3, y=4, z=5$. (Actually, infinitely many solutions)

Homework: Prove this for $\boldsymbol{x}^{\mathrm{n}}+\boldsymbol{y}^{\mathrm{n}}=z^{\mathrm{n}}$ for all integers $\mathbf{n} \boldsymbol{>} \mathbf{2}$.
Scratch that. This is Fermat's last theorem: Took 358 years to prove! See > 100-pages proof by Wiles (1995).

Non-Constructive Existence Proof

- Goal: Prove $\exists x \mathrm{P}(x)$

Non-constructive proof method: Prove indirectly, e.g., via a contradiction.

Example: A real no. r is rational iff \exists integers p,q s.t. $r=p / q$. A real no. is irrational iff it is not rational. Prove that \exists irrational x, y s.t. x^{y} is rational.
Pf. We know $\sqrt{2}$ is irrational (see text). Consider $\sqrt{2}^{\sqrt{2}}$.
Two possibilities: (a) $\sqrt{2}^{\sqrt{2}}$ is rational. Then, choose $x=y=\sqrt{2}$.
(b) $\sqrt{2}^{\sqrt{2}}$ is irrational. Choose $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$. Then, $x^{y}=2$ is rational. Either way, we have shown $\exists \mathrm{x}, \mathrm{y}$ s.t. x^{y} is rational.

Review of Chapter 1

- Propositional Logic
\Rightarrow Propositions, logical operators $\neg, \wedge, \vee, \oplus, \rightarrow, \leftrightarrow$, truth tables for operators, precedence of logical operators
\Rightarrow Compound propositions, truth tables for compound propositions
\Rightarrow Converse, contrapositive, and inverse of $p \rightarrow q$
\Rightarrow Converting from/to English and propositional logic
- Propositional Equivalences
\Rightarrow Tautology versus contradiction
\Rightarrow Logical equivalence $\mathrm{p} \equiv \mathrm{q}$
\Rightarrow Tables of logical equivalences (tables 6, 7, 8 in text)
\Rightarrow De Morgan's laws
\Rightarrow Showing two compound propositions are logically equivalent via (a) truth table method and (b) via equivalences in tables $6,7,8$.

Predicate Logic

- Predicates and Quantifiers
\Rightarrow Predicates, variables, and domain of each variable
\Leftrightarrow Universal and existential quantifiers \forall and \exists (uniqueness \exists !)
\Rightarrow Truth value of a quantifier statement
\Rightarrow Restricting domain of a quantifier, precedence over other operators, and binding variable to a quantifier
\Rightarrow Logical equivalence of two quantified statements
\Rightarrow Negation and De Morgan's laws for quantifiers
\Rightarrow Translating to/from English
- Nested Quantifiers
\Rightarrow Quantifiers as loops
\Rightarrow Order of quantifiers matters!

\Rightarrow Translating to/from English, negating nested quantifiers

Rules of Inference

\uparrow Argument, Premises, Conclusion, Argument form \Rightarrow Valid argument and valid argument form (show it is a tautology).

- Rule of inference $=$ valid argument form. Table 1 (p. 66).
\Rightarrow Modus ponens: $[\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q})] \rightarrow \mathrm{q}$
\Rightarrow Modus tollens: $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \neg \mathrm{q}] \rightarrow \neg \mathrm{p}$
\Rightarrow Hypothetical Syllogism: $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
\Rightarrow Disjunctive Syllogism: : $[(p \vee q) \wedge \neg p] \rightarrow q$
\Rightarrow Addition, Simplification, Conjunction
\Rightarrow Resolution: $[(\mathrm{p} \vee \mathrm{q}) \wedge(\neg \mathrm{p} \vee \mathrm{r})] \rightarrow(\mathrm{q} \vee \mathrm{r})$
- Using rules of inference to prove statements from premises
- Rules of inference for quantified statements: instantiation and generalization

Proofs and Proof Methods

- Direct proof of $\mathrm{p} \rightarrow \mathrm{q}$: Assume p is true; show q is true.
\Leftrightarrow Example in class: If n is an even integer, then n^{2} is even.
- Proof of $\mathrm{p} \rightarrow \mathrm{q}$ by contraposition: Assume $\neg \mathrm{q}$ and show $\neg \mathrm{p}$.
\Rightarrow Example in class: If n^{2} is even for integer n, then n is even.
- Vacuous and Trivial Proofs of $\mathrm{p} \rightarrow \mathrm{q}$
- Proof by contradiction of a statement p: Assume p is not true and show this leads to a contradiction ($\mathrm{r} \wedge \neg \mathrm{r}$).
\Rightarrow Example in class: Pigeonhole principle
\downarrow Proofs of equivalence for $\mathrm{p} \leftrightarrow \mathrm{q}$: Show $\mathrm{p} \rightarrow \mathrm{q}$ and $\mathrm{q} \rightarrow \mathrm{p}$
- Proof by cases and Existence proofs

