Today's Expedition...

- TED highlights
- Equivalence Relations
\Rightarrow Equivalence Classes and Partitions
- Boolean Algebra
\Rightarrow Boolean functions
\Rightarrow Sum of Products expansion
\Rightarrow Logic gates and circuits
- Sections 8.5, 11.1-11.3 in the text

Relations

A binary relation R from set A to set B is a subset of Cartesian product $A \times B$

Example: $A=\mathrm{UW}$ students $B=\mathrm{UW}$ courses $R=\{(a, b) \mid a$ is enrolled in $b\}$

$$
\text { Example: } \begin{aligned}
A & =\{0,1,2\} \quad B=\{a, b\} \\
R & =\{(0, a),(0, b),(1, a),(2, b)\}
\end{aligned}
$$

Equivalence Relation
A binary relation on a set A is called an equivalence relation iff it is reflexive, symmetric, and transitive.
$a \sim b$ a is equivalent to b with respect to a particular equivalence relation

Examples

Equivalence relations
$R=\{(a, b) \mid a=b\}$
$R=\{(a, b) \mid a=b$ or $a=-b\}$
$R=\{(a, b) \mid a \equiv b(\bmod m)\}$ where m is a positiveinteger >1
Not an equivalence relation:
$R=\{(a, b) \mid a \leq b\} \quad$ Not symmetric
$R=\{(a, b) \mid b=a+1\}$ Not reflexive, symmetric, or transitive

Equivalence Classes

- Given an equivalence relation R on set A, the equivalence class of an element a in A is: $[a]_{R}=\{b \mid(a, b) \in R\}$
- Example:
$R=\{(a, b) \mid a \equiv b(\bmod 3)\}$ over the set of integers
- 3 equivalence classes (congruence classes modulo 3)
$[0]_{3}=\{0,-3,3,-6,6, \ldots\} \quad$ All integers with remainder 0
$[1]_{3}=\{1,-2,4,-5,7, \ldots\}$ All integers with remainder 1
$[2]_{3}=\{2,-1,5,-4,8, \ldots\}$ All integers with remainder 2

Partitions

\downarrow Partition of a set $S=$ collection of disjoint nonempty subsets of S whose union is S.
\uparrow Theorem: Let R be an equivalence relation on set S . Equivalence classes of R form a partition of S .
\Rightarrow See Section 8.5 in text for proof.

- Example: The equivalence relation
$R=\{(a, b) \mid a \equiv b(\bmod 3)\}$ over the set of integers results in the following partition of the set of all integers:

$$
\begin{aligned}
& {[0]_{3}=\{0,-3,3,-6,6, \ldots\}} \\
& {[1]_{3}=\{1,-2,4,-5,7, \ldots\}} \\
& {[2]_{3}=\{2,-1,5,-4,8, \ldots\}}
\end{aligned}
$$

Boolean Algebra

Sections 11.1-11.3

Boolean Algebra

\downarrow Just like propositional logic
\downarrow Variables can take on values 1 or 0

- We will denote the two values as
$\mathbf{0} ; \equiv \mathbf{F}$ and $\mathbf{1}: \equiv \mathbf{T}$, instead of False and True.

Boolean Operations

\uparrow Correspond to logical NOT, OR, and AND.

- NOT, AND, and OR operators:

Review of Boolean algebra

\downarrow NOT is a horizontal bar above the number
$\Rightarrow \overline{0}=1$
$\Rightarrow \overline{1}=0$
\rightarrow OR is a plus
$\Rightarrow 0+0=0$
$\Rightarrow 0+1=1$
$\Rightarrow 1+0=1$
$\Rightarrow 1+1=1$
\rightarrow AND is multiplication
$\Rightarrow 0 \cdot 0=0$
$\Rightarrow 0 \cdot 1=0$
$\Rightarrow 1 \cdot 0=0$
$\Rightarrow 1 \cdot 1=1$

Boolean Expressions and Functions

\downarrow Example: Translate $(x+y+z)(\bar{x} \bar{y} \bar{z})$ to a Boolean logic expression

$$
\Rightarrow(x \vee y \vee z) \wedge(\neg x \wedge \neg y \wedge \neg z)
$$

\uparrow We can define a Boolean function:
$\Rightarrow F(x, y)=(x+y)(\bar{x}+\bar{y})$

- And then write a "truth table" for it:

x	y	$x+y$	$\bar{x}+\bar{y}$	$F(x, y)$
1	1	1	0	0
1	0	1	1	1
0	1	1	1	1
0	0	0	1	0

N -cube representation of Boolean functions

\rightarrow Any Boolean function of n variables can be represented by an n-cube with the function values at vertices. (Solid black circle for 1).

Boolean identities

- Double complement: $\overline{\bar{x}}=x$
- Idempotent laws:

$$
x+x=x, \quad x \cdot x=x
$$

- Identity laws:

$$
x+\mathbf{0}=x, \quad x \cdot \mathbf{1}=x
$$

- Domination laws:

$$
x+\mathbf{1}=\mathbf{1}, \quad x \cdot \mathbf{0}=\mathbf{0}
$$

- Commutative laws:

$$
x+y=y+x, \quad x \cdot y=y \cdot x
$$

- Associative laws:

$$
\begin{aligned}
& x+(y+z)=(x+y)+z \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z
\end{aligned}
$$

- Distributive laws:

$$
x+y \cdot z=(x+y) \cdot(x+z)
$$

$$
x \cdot(y+z)=x \cdot y+x \cdot z
$$

- De Morgan's laws:

$$
\overline{(x \cdot y)}=\bar{x}+\bar{y}, \overline{(x+y)}=\bar{x} \cdot \bar{y}
$$

- Absorption laws:

$$
x+x \cdot y=x, \quad x \cdot(x+y)=x
$$

$$
\text { also, the Unit Property: } x+\bar{x}=1 \text { and Zero Property: } x \cdot \bar{x}=0
$$

Sum-of-Products Expansion

\uparrow Theorem: Any Boolean function can be represented as a sum of products of variables and their complements.
\Rightarrow Proof: By construction from the function's truth table.

- Example: $F(x, y, z)=(x+y)(\bar{x}+\bar{y})$

x	y	$F(x, y)$
1	1	0
1	0	1
0	1	1
0	0	0

(x, y, and their complements are called "literals")

Functional Completeness

\checkmark From previous theorem, any Boolean function can be expressed in terms of $\cdot,+$,
\Rightarrow The set of operators $\left\{\cdot,+,{ }^{-}\right\}$is said to be functionally complete.
\star Smaller set of functionally complete operators?
\Rightarrow YES! E.g., Eliminate + using DeMorgan's law. Use

$$
x+y=\overline{\bar{x} \bar{y}}
$$

to write any Boolean function using only $\left\{\cdot,^{-}\right\}$.
\checkmark NAND \mid and NOR \downarrow are also functionally complete, each by itself (as a singleton set).

$$
\Rightarrow \text { E.g., } \neg x=x \mid x \text {, and } x y=(x \mid y) \mid(x \mid y) .
$$

Basic logic gates

- Not

- And

- Or
\rightarrow Nand

- Nor
- Xor

Boolean Circuits: Example 1

Find the output of the following circuit

\rightarrow Answer: $(x+y) \overline{\bar{y}}$

Example 2

Find the output of the following circuit

- Answer: $\overline{\overline{\bar{x}} \overline{\bar{y}}}$

Example 3

- Draw the circuit for the following Boolean function $\bar{x}+y$

Example 4

- Draw the circuit for the following Boolean function $(x+y) x$

Writing XOR using AND/OR/NOT

- $p \oplus q \equiv(p \vee q) \wedge \neg(p \wedge q)$
$\leftrightarrow x \oplus \mathrm{y} \equiv(\mathrm{x}+\mathrm{y}) \overline{(x y)}$

x	y	$x \oplus y$
1	1	0
1	0	1
0	1	1
0	0	0

How to add binary numbers
\uparrow Consider adding two 1-bit binary numbers x and y
$\Rightarrow 0+0=0$
$\Rightarrow 0+1=1$
$\Rightarrow 1+0=1$
$\Rightarrow 1+1=10$
\rightarrow Carry is x AND y

x	y	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

\uparrow Sum is x XOR y
\rightarrow The circuit to compute this is called a half-adder

The half-adder

- Sum $=x$ XOR y
\star Carry $=x$ AND y

Using half adders

\star We can then use a half-adder to compute the sum of two Boolean numbers

Full Adder
\uparrow We need to create an adder that can take a carry bit c as an additional input \Rightarrow Inputs: x, y, carry in \Rightarrow Outputs: sum, carry out

- This is called a full adder
\Rightarrow Will add x and y with a half-adder
\Rightarrow Will add the sum of that to the carry in

x	y	c	carry	sum
1	1	1	1	1
1	1	0	1	0
1	0	1	1	0
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	0	1
0	0	0	0	0

The full adder

\downarrow The "HA" boxes are half-adders

The full adder

- The full circuitry of the full adder

Adding bigger binary numbers

- Just chain full adders together

Next Class: Graphs and Trees!

Sections 9.1 and 10.1

