
1R. Rao, CSE 311

Today’s Expedition…

 TED highlights

 Equivalence Relations
 Equivalence Classes and Partitions

 Boolean Algebra
 Boolean functions

 Sum of Products expansion

 Logic gates and circuits

 Sections 8.5, 11.1-11.3 in the text

Based on Rosen and A. Bloomfield

2R. Rao, CSE 311

TED 2011 Highlights

(http://conferences.ted.com/TED2011/photos/)

http://conferences.ted.com/TED2011/photos/

3R. Rao, CSE 311

Relations

A binary relation R from set to set

is a subset of Cartesian product

A B

BA

Example: }2,1,0{A },{ baB 

)},2(),,1(),,0(),,0{(babaR 

Example: courses UW students UW  BA

}in enrolled is |),{(babaR 

4R. Rao, CSE 311

A binary relation on a set A is called an

equivalence relation iff it is reflexive, symmetric,

and transitive.

ba ~ a is equivalent to b with respect to a

particular equivalence relation

Equivalence Relation

5R. Rao, CSE 311

Examples

1integer positive a is where)}(mod|),{( mmbabaR

}or |),{(bababaR 

}|),{(babaR 

}1|),{( abbaR

Equivalence relations

Not an equivalence relation:

Not symmetric

Not reflexive, symmetric, or

transitive

}|),{(babaR 

6R. Rao, CSE 311

Equivalence Classes

 Given an equivalence relation R on set A, the equivalence

class of an element a in A is: [a]R = {b | (a,b)  R}

 Example:

 3 equivalence classes (congruence classes modulo 3)

[0]3 = {0, -3, 3, -6, 6, …} All integers with remainder 0

[1]3 = {1, -2, 4, -5, 7, …} All integers with remainder 1

[2]3 = {2, -1, 5, -4, 8, …} All integers with remainder 2

integers ofset over the)}3(mod|),{(babaR 

7R. Rao, CSE 311

Partitions

 Partition of a set S = collection of disjoint nonempty

subsets of S whose union is S.

 Theorem: Let R be an equivalence relation on set S.

Equivalence classes of R form a partition of S.
 See Section 8.5 in text for proof.

 Example: The equivalence relation

results in the following partition of the set of all integers:

integers ofset over the)}3(mod|),{(babaR 

[0]3 = {0, -3, 3, -6, 6, …}

[1]3 = {1, -2, 4, -5, 7, …}

[2]3 = {2, -1, 5, -4, 8, …}

8R. Rao, CSE 311

Boolean Algebra

Sections 11.1-11.3

9R. Rao, CSE 311

Boolean Algebra

 Just like propositional logic

 Variables can take on values 1 or 0

 We will denote the two values as

0:≡F and 1:≡T, instead of False and True.

10R. Rao, CSE 311

Boolean Operations

 Correspond to logical NOT, OR, and AND.

 NOT, AND, and OR operators:

xx : yxyx  :yxyx  :

Precedence order→

11R. Rao, CSE 311

Review of Boolean algebra

 NOT is a horizontal bar above the number
 0 = 1
 1 = 0

 OR is a plus
 0+0 = 0
 0+1 = 1
 1+0 = 1
 1+1 = 1

 AND is multiplication
 0  0 = 0
 0  1 = 0
 1  0 = 0
 1  1 = 1

_
_

12R. Rao, CSE 311

Boolean Expressions and Functions

 Example: Translate (x+y+z)(xyz) to a Boolean logic

expression
 (xyz)(xyz)

 We can define a Boolean function:
 F(x,y) = (x+y)(x+y)

 And then write a “truth table” for it:

_ _ _

x y x+y x+y F(x,y)

1 1 1 0 0

1 0 1 1 1

0 1 1 1 1

0 0 0 1 0

_ _

_ _

13R. Rao, CSE 311

N-cube representation of Boolean functions

 Any Boolean function of n variables can be represented by

an n-cube with the function values at vertices. (Solid black

circle for 1).

(0,0,0) (0,0,1)

(1,0,0) (1,0,1)

(0,1,0)
(0,1,1)

(1,1,0)
(1,1,1)

zxy 

(x, y, z)

14R. Rao, CSE 311

Boolean identities

 Double complement:
x = x

 Idempotent laws:
x + x = x, x · x = x

 Identity laws:
x + 0 = x, x · 1 = x

 Domination laws:
x + 1 = 1, x · 0 = 0

 Commutative laws:
x + y = y + x, x · y = y · x

 Associative laws:
x + (y + z) = (x + y) + z

x · (y · z) = (x · y) · z

 Distributive laws:
x + y·z = (x + y)·(x + z)

x · (y + z) = x·y + x·z

 De Morgan’s laws:
(x · y) = x + y, (x + y) = x · y

 Absorption laws:
x + x·y = x, x · (x + y) = x

also, the Unit Property: x + x = 1 and Zero Property: x · x = 0

15R. Rao, CSE 311

Sum-of-Products Expansion

 Theorem: Any Boolean function can be represented as a

sum of products of variables and their complements.
 Proof: By construction from the function’s truth table.

 Example: F(x,y,z) = (x+y)(x+y)

x y F(x,y)

1 1 0

1 0 1

0 1 1

0 0 0

_ _

F(x,y,z) = xy + xy
_ _

“minterms”

(x, y, and their complements are called “literals”)

16R. Rao, CSE 311

Functional Completeness

 From previous theorem, any Boolean function can
be expressed in terms of ·, +, ¯
 The set of operators {·,+,¯} is said to be functionally complete.

 Smaller set of functionally complete operators?
 YES! E.g., Eliminate + using DeMorgan’s law. Use

to write any Boolean function using only {·, ¯}.

 NAND | and NOR ↓ are also functionally complete,
each by itself (as a singleton set).
 E.g., x = x|x, and xy = (x|y)|(x|y).

 yxyx 

17R. Rao, CSE 311

Basic logic gates

 Not

 And

 Or

 Nand

 Nor

 Xor

x
x

x
y

xy x
y

xyz

z
xyx

y
x
y

x+y+z

z

x
y

xy

xyx
y

xÅyx
y

18R. Rao, CSE 311

Boolean Circuits: Example 1

 Find the output of the following circuit

 Answer: (x+y)y

x
y

x+y

y

(x+y)y

__

x
y

y

19R. Rao, CSE 311

x

y

Example 2

 Find the output of the following circuit

 Answer: xy

x

y

x y x y

_ ____

20R. Rao, CSE 311

Example 3

 Draw the circuit for the following Boolean function

x + y

x

y

x

y

x

y

__

x x+y

21R. Rao, CSE 311

x

y

x

y

Example 4

 Draw the circuit for the following Boolean function

(x+y)x

x

y

x+y
x+y (x+y)xx

y

22R. Rao, CSE 311 22

Writing XOR using AND/OR/NOT

 p Å q  (p  q)  ¬(p  q)

 x Å y  (x + y)(xy)

x y xÅy

1 1 0

1 0 1

0 1 1

0 0 0

x
y

x+y

xy xy

(x+y)(xy)

23R. Rao, CSE 311

How to add binary numbers

 Consider adding two 1-bit binary numbers x and y
 0+0 = 0

 0+1 = 1

 1+0 = 1

 1+1 = 10

 Carry is x AND y

 Sum is x XOR y

 The circuit to compute this is called a half-adder

x y Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

24R. Rao, CSE 311

The half-adder

 Sum = x XOR y

 Carry = x AND y

x
y Sum

Carry

x
y

Sum

Carry

25R. Rao, CSE 311

Using half adders

 We can then use a half-adder to compute the sum of two

Boolean numbers

1 1 0 0

+ 1 1 1 0

010?

001

26R. Rao, CSE 311

Full Adder

 We need to create an adder that can take a carry bit c
as an additional input
 Inputs: x, y, carry in
 Outputs: sum, carry out

 This is called a full adder
Will add x and y with a half-adder
Will add the sum of that to the

carry in

x y c carry sum

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0

27R. Rao, CSE 311

The full adder

 The “HA” boxes are half-adders

HAX

Y

S

C

HAX

Y

S

C

x

y

c

c

s

HAX

Y

S

C

HAX

Y

S

C

x

y

c

28R. Rao, CSE 311

The full adder

 The full circuitry of the full adder

x
y

s

c

c

29R. Rao, CSE 311

Adding bigger binary numbers

 Just chain full adders together

HAX

Y

S

C

FAC

Y

X

S

C

FAC

Y

X

S

C

FAC

Y

X

S

C

x1
y1

x2
y2

x3
y3

x0
y0

s0

s1

s2

s3

c

30R. Rao, CSE 311

Next Class: Graphs and Trees!

Sections 9.1 and 10.1

