
1R. Rao, CSE 311

Today’s Expedition…

 TED highlights

 Equivalence Relations
 Equivalence Classes and Partitions

 Boolean Algebra
 Boolean functions

 Sum of Products expansion

 Logic gates and circuits

 Sections 8.5, 11.1-11.3 in the text

Based on Rosen and A. Bloomfield

2R. Rao, CSE 311

TED 2011 Highlights

(http://conferences.ted.com/TED2011/photos/)

http://conferences.ted.com/TED2011/photos/

3R. Rao, CSE 311

Relations

A binary relation R from set to set

is a subset of Cartesian product

A B

BA

Example: }2,1,0{A },{ baB

)},2(),,1(),,0(),,0{(babaR

Example: courses UW students UW BA

}in enrolled is |),{(babaR

4R. Rao, CSE 311

A binary relation on a set A is called an

equivalence relation iff it is reflexive, symmetric,

and transitive.

ba ~ a is equivalent to b with respect to a

particular equivalence relation

Equivalence Relation

5R. Rao, CSE 311

Examples

1integer positive a is where)}(mod|),{(mmbabaR

}or |),{(bababaR

}|),{(babaR

}1|),{(abbaR

Equivalence relations

Not an equivalence relation:

Not symmetric

Not reflexive, symmetric, or

transitive

}|),{(babaR

6R. Rao, CSE 311

Equivalence Classes

 Given an equivalence relation R on set A, the equivalence

class of an element a in A is: [a]R = {b | (a,b) R}

 Example:

 3 equivalence classes (congruence classes modulo 3)

[0]3 = {0, -3, 3, -6, 6, …} All integers with remainder 0

[1]3 = {1, -2, 4, -5, 7, …} All integers with remainder 1

[2]3 = {2, -1, 5, -4, 8, …} All integers with remainder 2

integers ofset over the)}3(mod|),{(babaR

7R. Rao, CSE 311

Partitions

 Partition of a set S = collection of disjoint nonempty

subsets of S whose union is S.

 Theorem: Let R be an equivalence relation on set S.

Equivalence classes of R form a partition of S.
 See Section 8.5 in text for proof.

 Example: The equivalence relation

results in the following partition of the set of all integers:

integers ofset over the)}3(mod|),{(babaR

[0]3 = {0, -3, 3, -6, 6, …}

[1]3 = {1, -2, 4, -5, 7, …}

[2]3 = {2, -1, 5, -4, 8, …}

8R. Rao, CSE 311

Boolean Algebra

Sections 11.1-11.3

9R. Rao, CSE 311

Boolean Algebra

 Just like propositional logic

 Variables can take on values 1 or 0

 We will denote the two values as

0:≡F and 1:≡T, instead of False and True.

10R. Rao, CSE 311

Boolean Operations

 Correspond to logical NOT, OR, and AND.

 NOT, AND, and OR operators:

xx : yxyx :yxyx :

Precedence order→

11R. Rao, CSE 311

Review of Boolean algebra

 NOT is a horizontal bar above the number
 0 = 1
 1 = 0

 OR is a plus
 0+0 = 0
 0+1 = 1
 1+0 = 1
 1+1 = 1

 AND is multiplication
 0 0 = 0
 0 1 = 0
 1 0 = 0
 1 1 = 1

_
_

12R. Rao, CSE 311

Boolean Expressions and Functions

 Example: Translate (x+y+z)(xyz) to a Boolean logic

expression
 (xyz)(xyz)

 We can define a Boolean function:
 F(x,y) = (x+y)(x+y)

 And then write a “truth table” for it:

_ _ _

x y x+y x+y F(x,y)

1 1 1 0 0

1 0 1 1 1

0 1 1 1 1

0 0 0 1 0

_ _

_ _

13R. Rao, CSE 311

N-cube representation of Boolean functions

 Any Boolean function of n variables can be represented by

an n-cube with the function values at vertices. (Solid black

circle for 1).

(0,0,0) (0,0,1)

(1,0,0) (1,0,1)

(0,1,0)
(0,1,1)

(1,1,0)
(1,1,1)

zxy

(x, y, z)

14R. Rao, CSE 311

Boolean identities

 Double complement:
x = x

 Idempotent laws:
x + x = x, x · x = x

 Identity laws:
x + 0 = x, x · 1 = x

 Domination laws:
x + 1 = 1, x · 0 = 0

 Commutative laws:
x + y = y + x, x · y = y · x

 Associative laws:
x + (y + z) = (x + y) + z

x · (y · z) = (x · y) · z

 Distributive laws:
x + y·z = (x + y)·(x + z)

x · (y + z) = x·y + x·z

 De Morgan’s laws:
(x · y) = x + y, (x + y) = x · y

 Absorption laws:
x + x·y = x, x · (x + y) = x

also, the Unit Property: x + x = 1 and Zero Property: x · x = 0

15R. Rao, CSE 311

Sum-of-Products Expansion

 Theorem: Any Boolean function can be represented as a

sum of products of variables and their complements.
 Proof: By construction from the function’s truth table.

 Example: F(x,y,z) = (x+y)(x+y)

x y F(x,y)

1 1 0

1 0 1

0 1 1

0 0 0

_ _

F(x,y,z) = xy + xy
_ _

“minterms”

(x, y, and their complements are called “literals”)

16R. Rao, CSE 311

Functional Completeness

 From previous theorem, any Boolean function can
be expressed in terms of ·, +, ¯
 The set of operators {·,+,¯} is said to be functionally complete.

 Smaller set of functionally complete operators?
 YES! E.g., Eliminate + using DeMorgan’s law. Use

to write any Boolean function using only {·, ¯}.

 NAND | and NOR ↓ are also functionally complete,
each by itself (as a singleton set).
 E.g., x = x|x, and xy = (x|y)|(x|y).

 yxyx

17R. Rao, CSE 311

Basic logic gates

 Not

 And

 Or

 Nand

 Nor

 Xor

x
x

x
y

xy x
y

xyz

z
xyx

y
x
y

x+y+z

z

x
y

xy

xyx
y

xÅyx
y

18R. Rao, CSE 311

Boolean Circuits: Example 1

 Find the output of the following circuit

 Answer: (x+y)y

x
y

x+y

y

(x+y)y

__

x
y

y

19R. Rao, CSE 311

x

y

Example 2

 Find the output of the following circuit

 Answer: xy

x

y

x y x y

_ ____

20R. Rao, CSE 311

Example 3

 Draw the circuit for the following Boolean function

x + y

x

y

x

y

x

y

__

x x+y

21R. Rao, CSE 311

x

y

x

y

Example 4

 Draw the circuit for the following Boolean function

(x+y)x

x

y

x+y
x+y (x+y)xx

y

22R. Rao, CSE 311 22

Writing XOR using AND/OR/NOT

 p Å q (p q) ¬(p q)

 x Å y (x + y)(xy)

x y xÅy

1 1 0

1 0 1

0 1 1

0 0 0

x
y

x+y

xy xy

(x+y)(xy)

23R. Rao, CSE 311

How to add binary numbers

 Consider adding two 1-bit binary numbers x and y
 0+0 = 0

 0+1 = 1

 1+0 = 1

 1+1 = 10

 Carry is x AND y

 Sum is x XOR y

 The circuit to compute this is called a half-adder

x y Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

24R. Rao, CSE 311

The half-adder

 Sum = x XOR y

 Carry = x AND y

x
y Sum

Carry

x
y

Sum

Carry

25R. Rao, CSE 311

Using half adders

 We can then use a half-adder to compute the sum of two

Boolean numbers

1 1 0 0

+ 1 1 1 0

010?

001

26R. Rao, CSE 311

Full Adder

 We need to create an adder that can take a carry bit c
as an additional input
 Inputs: x, y, carry in
 Outputs: sum, carry out

 This is called a full adder
Will add x and y with a half-adder
Will add the sum of that to the

carry in

x y c carry sum

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0

27R. Rao, CSE 311

The full adder

 The “HA” boxes are half-adders

HAX

Y

S

C

HAX

Y

S

C

x

y

c

c

s

HAX

Y

S

C

HAX

Y

S

C

x

y

c

28R. Rao, CSE 311

The full adder

 The full circuitry of the full adder

x
y

s

c

c

29R. Rao, CSE 311

Adding bigger binary numbers

 Just chain full adders together

HAX

Y

S

C

FAC

Y

X

S

C

FAC

Y

X

S

C

FAC

Y

X

S

C

x1
y1

x2
y2

x3
y3

x0
y0

s0

s1

s2

s3

c

30R. Rao, CSE 311

Next Class: Graphs and Trees!

Sections 9.1 and 10.1

