

A binary relation *R* from set *A* to set *B* is a subset of Cartesian product $A \times B$ Example: A = UW students B = UW courses $R = \{(a,b) \mid a \text{ is enrolled in } b\}$ Example: $A = \{0,1,2\}$ $B = \{a,b\}$ $R = \{(0,a), (0,b), (1,a), (2,b)\}$ R.Rao, CSE 311

Examples

Equivalence relations $R = \{(a,b) | a = b\}$ $R = \{(a,b) | a = b \text{ or } a = -b\}$ $R = \{(a,b) | a \equiv b \pmod{m}\}$ where *m* is a positive integer > 1 Not an equivalence relation: $R = \{(a,b) | a \le b\}$ Not symmetric $R = \{(a,b) | b = a+1\}$ Not reflexive, symmetric, or transitive 5

