Last Course Topic: Graphs & Trees

+ Motivation for Graphs
+ Definition
< Directed and undirected graphs
+ Representing Graphs
+ Paths, Circuits, and Trees
+ Famous Graph Problems

+ Covered in Chapters 9 and 10 in the text (we will cover
mainly 9.1 and 10.1; you can browse the other sections)
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What are graphs? (Take 1)

4+ Yes, this is a graph....
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4+ But we are interested in a different kind of “graph”
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Course Prerequisites for CSE at UW

Nodes = courses ‘ @
Directed edge = prerequisite
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Representing a Maze or Floor Plan of a House

Nodes = rooms
Edge = door or passage
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Representing Electrical Circuits

Switch

Battery m
W

Nodes = battery, switch, resistor, etc.

Edges = connections Resistor
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Representing Expressions in Compilers

xl=q+y*z
x2=y*z-q Naive:

y*z calculated twice o
common & @
subexpression 6 ’
eliminated: @ 6
Nodes = symbols/operators W
Edges = relationships 9 (2)
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Dependency structure of statements
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S3 ci=a+1 ‘
S, di=b+a ‘
Ss ew=d+1

e:=c+d
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Data Centers and Connections

Detroit

New York
San Francisco Chicago
Vsenvm Washington

Los Angeles
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Data Centers with Multiple Connections

Detroit N&w Yoik

Chicago

San Francisco

Washington
Denver e

Los Angeles
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Data Centers with Diagnostic Connections

Detroit

Chicago New York

San Francisco

Denver =
Washington

Los Angeles
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Network with One-Way Links

Detroit New Yotk

Chicago

San Francisco

- Washington
Denver

Los Angeles
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People and Tasks

Alvarez Berkowitz Chen Davis

L NN

requirements architecture implementation testing
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Competition between Species

Raccoon

Squirrel

Opossum
Crow

Shrew Woodpecker
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Facebook Friends

Eduardo
Jan Paula Todd Kamlesh
Amy
Kamini Ching
Steve
Joel
Koko
Kari Shaquira
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Soap Opera Relationships

Victor /\
\/Ashley \

Wayne

Brad \
\ Peter

Trisha
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Six Degrees of Separation from Kevin Bacon
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Information Transmission in a Computer Network

New York
140

Nodes = computers

Weights on edges = transmission rates
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Traffic Flow on Highways
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Flight times between cities

Boston

FLIGHT TIMES
New York

San Francisco

- &
Los Angeles w\ /
Mi;uny
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Fares between cities

Boston

FARES

Los Angeles
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Mileage between cities

Boston

MILEAGE

San Francisco

Los Angeles
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Bayesian Networks
(Nodes + Edges + Probabilities)
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Bayesian Network for Gene Interactions
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Bayesian Network for Medical Diagnosis
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Image Analysis (“Markov Random Field”)

Object

Image Pixels

Background
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Graphs: Definition

+ A graph is simply a collection of nodes plus edges
< Linked lists, trees, and heaps are all special cases of graphs

+ The nodes are known as vertices (node = “vertex”)

+ Formal Definition: A graph G = (V, E) where
< Vis a set of vertices or nodes
< E is a set of edges that connect vertices
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Graphs: An Example

+ Hereisagraph G =(V, E)
< Each edge is a pair (vy, v,), Where vy, v, are vertices in V

v={A B,C,D,E,F}
E={(AB), (AD), (B,C), (C.D), (C,E), (D.E)}

w
O——
®
F—@
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Directed versus Undirected Graphs

+ If order of edge pairs (v, v,) matters, graph is directed (also
called a digraph): (vq, v,) # (V,, Vy)

@ _»

+ If order of edge pairs (v,, v,) does not matter, graph is called
an undirected graph: in this case, (v,, v,) = (v,, ;) So the

edge = {v;,v,}
(——=)
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Degree, In-Degree, Out-Degree

+ Degree of a vertex in an undirected graph = number of edges
incident on the vertex

+ In-Degree/Out-degree in a digraph = number of edges
entering/exiting a vertex

O—2)
v

E—
Deg(1)=2 In-Deg(2) = 2

Deg(4) =3 Out-Deg(2) =1
R. Rao, CSE 311 In-Deg(4)=0Out-Deg(4)=2 30




Graph Representations

There are two ways of representing graphs:
« The adjacency matrix representation

« The adjacency list representation

R. Rao, CSE 311
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Graph Representation: Adjacency Matrix

The adjacency matrix representation:

1 if(v,w)isinE A B C
My, w) = { 0 otherwise 5 [0 1 0
Bl 1 0 1 o
C 0O 1 0 1
D 1 0 1 O
E 0O 0 1 1
F\L0 0 0 O
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Graph Representation: Adjacency List

The adjacency list representation: For each vinV,
L(v) = list of w such that (v, w) isin E

(A,B)  (AD)
A B D
B A C
C B D E
D A C E
E C D
R. Rao, CSE 311 E 3
Adjacency List for a Digraph
A B D
B C
C D E
D E
:i Adjacency List
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Paths in Graphs

+ Path of length k from vertex u to vertex u'in G = (V, E) =
sequence of vertices <vg, vy, ..., vV,> where vy =u, v, = U,
and (v;,,Vv;) eEfori=1,2, ..k

a b c
—> >
A path fromatoc
<a, b, c>
Another path:
<a,e b, feb,c>
—¢
d e f
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Simple Paths and Circuits

+ Simple Path: Path that does not repeat an edge
+ Circuit: Path that begins and ends at the same vertex

A simple path fromatoc
b c <a, b, c>

Not a simple path:
<a,e b, fe b, c>
Circuit:

<a,b,c, f, b, a>
Simple circuit:

z f <a,b,c,fe,a>
Simple circuit visiting all vertices:
R. Rao, CSE 311 <a,b,c,fe,d,a>




Connected Graphs

+ An undirected graph is connected iff there is a path between
every pair of vertices

+ Addirected graph is (weakly) connected iff the underlying
undirected graph is connected

a b

e d

~,

g e d

Connected Not connected Connected
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Trees

+ Atree is a connected graph with no circuits

a b a b a b a b
d C
c d
C d C d
€ f e f e I e f
Tree Tree Not a tree Not a tree
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Examples of Trees: Folders and file system

= Cd

= Mike

=y BackUp
X0.xml
X1.xml
X2 .xml

T New

H §YourDir.dat

{ HYourDir.exe
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Example: Connecting Multi-Processors

P, P, P P,
E.g., Multiplying 8 large numbers in 3 steps

R. Rao, CSE 311
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Binary Search Trees

R. Rao, CSE 311 41

Game Trees

Which move do you choose? (a “X”)
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Pray tell, how
dDoeg a prince
repregent his

vopal family tree?
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Prince Philip =  Elizabeth Il
b. 1821 | b. 1928

Ehatlss = Diana

mmam Henry
1382 b. 1984

\
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Annu = Mark

Royal b. 1348

.H.ﬂﬂll'l' = Sarah Eﬂwaru

Primce of Wales | Spencer  Princess Fhllllﬂs Duke of | Ferguson B.1964
I]IJIl.B of Corawall | b. 1961 York b. 1939
1548 d 1937 b 135I] b 1960
Ptt!l’ Lara
b 1577 b.1981

naatrlta Eugenie
bo1388 b 1920




Famous Graph Problems: Topological Sort

Graph of course
prerequisites

Problem: Find an order
in which all these
courses can be taken.
Example: 142, 143,
331, 311, 312, 332, 351,
352, 333

R Reo, CSE 311 To take a course, all its prerequisites

must be taken first

Famous Graph Problems: Euler Circuits

+ Find a circuit going through every edge exactly once.
a b a b a b
X % [ I A
d c d c c d e
abedcea No Euler circuit No Euler circuit
(An Euler path exists though)

Theorem: For Euler circuit to exist, every vertex must have even degree
(Why? If entering vertex, must exit)

R.Rao,CSE3LL = Fast algorithm for checking if Euler circuit exists




Hamiltonian Circuit Problem

+ Find a circuit passing through every vertex exactly
once.

Los Angeles /‘\

Miami &;

San Francisco, Chicago, Boston, New York, Miami, Atlanta,
Denver, LA, San Francisco
R. Rao, CSE 311
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Hamiltonian Circuit Problem

+ Find a circuit in G = (V,E) passing through every
vertex exactly once.

+ Naive algorithm:
< Try all permutations of the vertices
< Check to see if any permutation is a valid Hamiltonian
circuit in the graph.

+ There are |V|! permutations = running time is >
exponential in size of input.

Can show this is an “NP-Complete” Problem:
Fast algorithm unlikely to exist!!
(More on this in CSE 312)

R. Rao, CSE 311
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Next Class: Final Review!
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