Last Course Topic: Graphs \& Trees

- Motivation for Graphs
- Definition
\Rightarrow Directed and undirected graphs
\uparrow Representing Graphs
- Paths, Circuits, and Trees
\downarrow Famous Graph Problems
\star Covered in Chapters 9 and 10 in the text (we will cover mainly 9.1 and 10.1 ; you can browse the other sections)

What are graphs? (Take 1)

\uparrow Yes, this is a graph....

\star But we are interested in a different kind of "graph"

Course Prerequisites for CSE at UW

Representing a Maze or Floor Plan of a House

Nodes $=$ rooms
Edge $=$ door or passage

Representing Electrical Circuits

Nodes $=$ battery, switch, resistor, etc.
Edges = connections

Representing Expressions in Compilers

Dependency structure of statements

Data Centers and Connections

Data Centers with Multiple Connections

Data Centers with Diagnostic Connections

Network with One-Way Links

People and Tasks

Alvarez Berkowitz Chen Davis
requirements architecture implementation testing

Competition between Species

Facebook Friends

Soap Opera Relationships

Six Degrees of Separation from Kevin Bacon

Nodes $=$ computers
Weights on edges = transmission rates

Traffic Flow on Highways

Flight times between cities

Fares between cities

Bayesian Networks

(Nodes + Edges + Probabilities)

Bayesian Network for Gene Interactions

Bayesian Network for Medical Diagnosis

Image Analysis ("Markov Random Field")

Background

Graphs: Definition

\downarrow A graph is simply a collection of nodes plus edges
\Rightarrow Linked lists, trees, and heaps are all special cases of graphs
\uparrow The nodes are known as vertices (node $=$ "vertex")
\downarrow Formal Definition: A graph $G=(V, E)$ where
$\Rightarrow V$ is a set of vertices or nodes
$\Leftrightarrow E$ is a set of edges that connect vertices

Graphs: An Example

- Here is a graph $G=(V, E)$
\Rightarrow Each edge is a pair $\left(v_{1}, v_{2}\right)$, where v_{1}, v_{2} are vertices in V
$V=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$
$E=\{(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{D}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{D}),(\mathrm{C}, \mathrm{E}),(\mathrm{D}, \mathrm{E})\}$

F

Directed versus Undirected Graphs

\leftrightarrow If order of edge pairs $\left(v_{1}, v_{2}\right)$ matters, graph is directed (also called a digraph $):\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)$

\uparrow If order of edge pairs $\left(v_{1}, v_{2}\right)$ does not matter, graph is called an undirected graph: in this case, $\left(v_{1}, v_{2}\right)=\left(v_{2}, v_{1}\right)$ so the edge $=\left\{v_{1}, v_{2}\right\}$

Degree, In-Degree, Out-Degree

\downarrow Degree of a vertex in an undirected graph = number of edges incident on the vertex
\star In-Degree/Out-degree in a digraph = number of edges entering/exiting a vertex

$$
\operatorname{Deg}(1)=2
$$

$$
\operatorname{Deg}(4)=3
$$

In-Deg(2) = 2
Out-Deg(2) = 1
In-Deg(4)=Out-Deg(4)=2

Graph Representations

There are two ways of representing graphs:

- The adjacency matrix representation
- The adjacency list representation

Graph Representation: Adjacency Matrix

The adjacency matrix representation:

$$
M(v, w)=\left\{\begin{array}{ll}
1 & \text { if }(v, w) \text { is in } \mathrm{E} \\
0 & \text { otherwise } \\
\mathrm{A} \\
\mathrm{~B} \\
\text { R. Rao, } \operatorname{CSE} 311
\end{array}\left(\begin{array}{cccccc}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & \mathrm{E} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right.
$$

Graph Representation: Adjacency List

The adjacency list representation: For each v in V,
$L(v)=$ list of w such that (v, w) is in E

Adjacency List for a Digraph

Digraph

Paths in Graphs

\uparrow Path of length k from vertex u to vertex u^{\prime} in $\mathrm{G}=(\mathrm{V}, \mathrm{E})=$ sequence of vertices $\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ where $\mathrm{v}_{0}=\mathrm{u}, \mathrm{v}_{\mathrm{k}}=\mathrm{u}^{\prime}$, and $\left(v_{i-1}, v_{i}\right) \in E$ for $i=1,2, \ldots, k$.

A path from a to c <a, b, c>

Another path:
<a, e, b, f, e, b, c>

Simple Paths and Circuits

- Simple Path: Path that does not repeat an edge
\uparrow Circuit: Path that begins and ends at the same vertex
A simple path from a to c

<a, b, c>
Not a simple path:
<a, e, b, f, e, b, c>

Circuit:

<a,b,c, f, b, a>
Simple circuit:
<a,b,c,f,e,a>
Simple circuit visiting all vertices:
R. Rao, CSE 311
<a,b,c,f,e,d,a>

Connected Graphs

\uparrow An undirected graph is connected iff there is a path between every pair of vertices
\uparrow A directed graph is (weakly) connected iff the underlying undirected graph is connected

Connected

Not connected

Connected

Trees

\downarrow A tree is a connected graph with no circuits

Tree

Tree

Not a tree

Not a tree

Examples of Trees: Folders and file system

Example: Connecting Multi-Processors

E.g., Multiplying 8 large numbers in 3 steps

Binary Search Trees

Game Trees

Which move do you choose? ($a^{\prime} X^{\prime \prime}$)

Famous Graph Problems: Topological Sort

Problem: Find an order in which all these courses can be taken.
Example: 142, 143,
331, 311, 312, 332, 351, 352, 333

To take a course, all its prerequisites must be taken first

Famous Graph Problems: Euler Circuits

- Find a circuit going through every edge exactly once.

No Euler circuit
No Euler circuit (An Euler path exists though)

Theorem: For Euler circuit to exist, every vertex must have even degree (Why? If entering vertex, must exit)
R. Rao, CSE $311 \quad \Rightarrow$ Fast algorithm for checking if Euler circuit exists

Hamiltonian Circuit Problem

\rightarrow Find a circuit passing through every vertex exactly once.

San Francisco, Chicago, Boston, New York, Miami, Atlanta, Denver, LA, San Francisco

Hamiltonian Circuit Problem

\uparrow Find a circuit in $G=(\mathrm{V}, \mathrm{E})$ passing through every vertex exactly once.
\rightarrow Naïve algorithm:
\Rightarrow Try all permutations of the vertices
\Rightarrow Check to see if any permutation is a valid Hamiltonian circuit in the graph.
\star There are $|\mathrm{V}|$! permutations \Rightarrow running time is $>$ exponential in size of input.

Can show this is an "NP-Complete" Problem:

Fast algorithm unlikely to exist!!

(More on this in CSE 312)

