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Induction and Recursion
(Sections 4.1-4.3)

[Section 4.4 optional]

1Based on Rosen and slides by K. Busch

Induction
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Induction is a very useful proof technique

In computer science, induction is used
to prove properties of algorithms 

Induction and recursion are closely related

•Recursion is a description method for algorithms
•Induction is a proof method suitable 
for recursive algorithms
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Use induction to prove that
a proposition          is true: )(nP

Inductive Basis:

Inductive Hypothesis:

Inductive Step:

Prove that          is true

Assume         is true

Prove that              is true

)1(P

)(kP

)1( kP

(for any positive integer k)
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Inductive Step: Prove that              is true)1( kP

Inductive Hypothesis: Assume         is true)(kP

)1()(  kPkP

In other words in inductive step we prove:

(for any positive integer k)

for every positive integer k
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)1()(  kPkP)1(P

True True

 )4()3()2()1( PPPP

Inductive basis Inductive Step

Proposition true for all positive integers
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Induction as a rule of inference:

)())]1()(()1([ nnPkPkPkP 
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Inductive Basis:
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Inductive Hypothesis:
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Inductive Step:

Theorem:

Proof:
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We will prove

assume that it holds
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Inductive Step:

(inductive 
hypothesis)

End of Proof
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Harmonic numbers
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Theorem:
2
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Proof:

0n

Inductive Basis:
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Inductive Hypothesis: kn 
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H k Suppose it holds:

Inductive Step: 1 kn
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End of Proof

from inductive 
hypothesis
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Theorem: nH n 1
2

Proof:

0n

Inductive Basis:

nHHH n  1011122 0

0n
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Inductive Hypothesis: kn 

kH k 1
2

Suppose it holds:

Inductive Step: 1 kn

)1(112
 kH k

We will show:
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End of Proof

from inductive 
hypothesis
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We have shown:
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kHk log

(for large k)
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hole
hole

hole
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33 22 

Triominos
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Theorem: Every                       checkerboard 
with one square removed 
can be tiled with triominoes 

1,22  nnn

Proof: Inductive Basis: 1n

hole

11 22 
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Inductive Hypothesis: kn 

kk 22 

Hole can be anywhere

Assume that a              checkerboard 
can be tiled with the hole anywhere

kk 22 

20

Inductive Step: 1 kn

11 22   kk



11

21

kk 22  kk 22 

By inductive hypothesis             squares 
with a hole can be tiled

kk 22 

add three artificial holes
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23 x 23 case:
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Replace the three holes with a triomino
Now, the whole area can be tiled 
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End of Proof

23 x 23 case:
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Strong Induction
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Inductive Basis:

Inductive Hypothesis:

Inductive Step:

Prove that          is true

Assume                                       is true

Prove that              is true

)1(P

)()2()1( kPPP  

)1( kP

)(nPTo prove         :
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Theorem: Every integer           
is a product of primes
(Fundamental Theorem of Arithmetic) 

2n

Proof:

Inductive Basis: 2n

Number 2 is a prime

Inductive Hypothesis: kn 2

Suppose that every integer between 
and     is a product of primes2 k

(Strong Induction)
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Inductive Step: 1 kn

If            is prime then the proof is finished1k

If            is not a prime then it is composite:1k

bak 1 kba  ,2

28

bak 1 kba  ,2

By the inductive hypothesis:

ipppa 21

jqqqb 21

1, ji

ji qqppbak  111 

primes
primes

End of Proof
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Theorem: Every postage amount            
can be generated by using 
4-cent and 5-cent stamps  

12n

Proof:

Inductive Basis:

44412 n

We examine four cases 
(because of the inductive step)

54413 n

45514 n

55515 n

(Strong Induction)
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Inductive Hypothesis:

Assume that every postage amount
between       and     can be generated 
by using 4-cent and 5-cent stamps  

kn 12

12 k

Inductive Step: 1 kn

If                     then the inductive step 
follows directly from inductive basis

1412  k

54  ban
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Consider: 

31

15k 4)3(1  kk

kk  )3(12

Inductive hypothesis

54)3(  bak

54)1(4)3(1  bakk

End of Proof

Factorial function !)( nnf 

Recursion

32

Recursion is used to describe functions,
sets, algorithms 

Example:

1)0( f

)()1()1( nfnnf Recursive Step:

Recursive Basis:
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factorial(    ) {
if         then 

return   
else

return                           
}

n
1n

1

)1factorial(n-n 

//recursive basis

//recursive step

Recursive algorithm for factorial
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Fibonacci numbers

21   nnn fff

1,0 10  ffRecursive Basis:

Recursive Step:

,,,, 3210 ffff

,4,3,2n
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fibonacci(   ) {
if               then 

return  
else

return 
}

n
}1,0{n
n

)2fibonacci()1fibonacci( n-n- 

//recursive basis

//recursive step

Recursive algorithm for Fibonacci function
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fibonacci(   ) {
if          then
else {

for          to         do {

}
return

}

n
0n

Iterative algorithm for Fibonacci function

0y

0x
1y

1i 1n
yxz 

yx

zy 

y

38

Theorem: 2 n

nf 

2

51


3n

(golden ratio)

for

Proof: Proof by (strong) induction

Inductive Basis: 3n 4n

 23f

2

4 3 f
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We will prove                     for

39

Inductive Hypothesis:

2 n

nf 

kn 3

Inductive Step: 1 kn

Suppose it holds

)1(

1



  k

kf  k4
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132
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 is the solution to equation 012  xx

323321 )1(   kkkkk 

End of Proofinduction hypothesis
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Euclidean Algorithm for
Greatest Common Divisor

aa )0,gcd(

)mod,gcd(),gcd( babba Recursive Step:

Recursive Basis:

ba 

42

gcd(       ) {
if          then 

return  
else

return 
}

ba,
0b

a

)mod gcd(b, ba

//recursive basis

//recursive step

Recursive Euclidean algorithm for 
greatest common divisor

//assume a>b



22

43

Algorithm Mergesort

8  2  4  6  9  7  10  1  5  3

8  2  4  6  9 7  10  1  5  3

2  4  6  8  9 1  3  5  7  10

1  2  3  4  5  6  7  8  9  10

split

sort sort

merge

44

sort(                  ) {
if          then {

return 
}
else return

}

naaa ,,, 21 
1n
 2/nm 

),,,sort( 21 maaaA 

),,,sort( 1 nmm aaaB 

),merge( BA

1a
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8  2  4  6  9  7  10  1  5  3

Input values of recursive calls

8  2  4  6  9 7  10  1  5  3

8  2  4 6  9 7  10  1 5  3

48  2 6 9

8 2 

7  10 1

7 10

5 3
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1  2  3  4  5  6  7  8  9  10

Input and output values of merging

2  4  6  8  9 1  3  5  7  10

2  4  8 6  9 7  10  1 5  3

42  8 6 9

8 2 

7  10 1

7 10

5 3
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merge(        ) {

while                            do {
Remove smaller first element of 
from its list and insert it to

}
if                         then {      

append remaining elements to
}
return

}

L

BA, //two sorted lists

 BA  and 
BA,

L

 BA or  

L

L

48

2  4  6  8  9

2  4  8 6  9

merging

A B L Comparison
2 4  8

4  8
8
8

6 9
6  9
6 9

9
9

2
2  4
2 4  6
3 4  6  8
2  4  6  8  9 

2<6
4<6
6<8
8<9
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The total number of comparisons to 
merge two lists        is at most:BA,

|||| scomparison# BA 

Length of A Length of B

Merged size
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Recursive invocation tree
naaa ,,, 21 

2

21 ,,, naaa  nnn aaa ,,,
2

2
1

2
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1a 2a 3a
4a 3na 2na 1na na

41 ,, aa 
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4
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kn 2
Assume
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Elements per list

#levels of tree = nlog1kn 2
Assume

nn loglog21 

0log2  nn

1log22/  nn

)1(loglog22  nn


)2(loglog24  nn

Recursive invocation tree

2log24/  nn



n

2/n 2/n

4/n 4/n 4/n 4/n

4 4

2 2 2 2

1 1 1 11 1 1 1
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merging tree

naaa ,,, 21 

2

21 ,,, naaa  nnn aaa ,,,
2

2
1

2




21,aa 43,aa 23,  nn aa
nn aa ,1

1a 2a 3a
4a 3na 2na 1na na

41 ,, aa 
nn aa ,,3 

4

1 ,, naa 
2

1
4

,, nn aa 


4

3
1

2

,, nn aa 


nn aa ,,
1

4

3 
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merging tree

2

4

2/n

n





Elements per list

4/n

1

n

2/n 2/n

4/n 4/n 4/n 4/n

4 4

2 2 2 2

1 1 1 11 1 1 1

nn 44/

54

nn  2/2

nn  4/4

nn 22/

nn 1



Merges 
per level

Total cost: nnn log1)-levels(# 

merging tree Comparisons per level



n

2/n 2/n

4/n 4/n 4/n 4/n

4 4

2 2 2 2

1 1 1 11 1 1 1

Elements
per merge
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If             the number of comparisons is
at most

55

kn 2
nn log

If             the number of comparisons 
is at most

kn 2

nncnnmm log2log2log 

  nm
n

22
log



Therefore, worst-case running time of 
merge sort is nn log

where 


