Section 3 Worksheet Solutions

April 18, 2013

Proof with Even and Odd

Premises: $\forall x\neg(\text{Even}(x) \land \text{Odd}(x)), \forall x(\text{Even}(x) \rightarrow \text{Even}(x^2), \forall x(\text{Even}(x) \lor \text{Odd}(x))$

Conclusion: $\forall x(Odd(x^2) \rightarrow Odd(x))$

Proof with Even and Odd

- (1) $\forall x(\text{Even}(x) \rightarrow \text{Even}(x^2)$ Premise
- (2) Even(a) \rightarrow Even(a²) \forall elim., a arbitrary
- (3) $\neg \text{Even}(a^2) \rightarrow \neg \text{Even}(a)$ Contrapositive of (2)
- (4) $\forall x(Odd(x) \ v \ Even(x))$ Premise
- (5) Odd(a) v Even(a) ∀elim.
- (6) ¬Even(a), . Odd(a) Disjunctive Syllogism
- (7) Odd(a^2) \rightarrow Odd(a) Applying (6) to (3) (similar argument for a^2)
- (8) $\forall x(Odd(x^2) \rightarrow Odd(x)) \forall intro.$

1. Premises: $\forall x(P(x) \rightarrow (Q(x) \land S(x))), \forall x(P(x) \land R(x))$

Conclusion: $\forall x(R(x) \land S(x))$

$$(1) \forall x(P(x) \land R(x))$$
 Premise

(2)
$$P(a) \wedge R(a)$$
 \forall elimination, a arb.

(4)
$$\forall x(P(x) \rightarrow (Q(x) \land S(x)))$$
 Premise

(5)
$$P(a) \rightarrow (Q(a) \land S(a))$$
 \forall elimination

$$(1) \forall x(P(x) \land R(x))$$
 Premise

(2)
$$P(a) ^ R(a)$$
 \forall elimination, a arb.

(4)
$$\forall x(P(x) \rightarrow (Q(x) \land S(x)))$$
 Premise

(5)
$$P(a) \rightarrow (Q(a) \land S(a))$$
 \forall elimination

(9)
$$\forall x(R(x) \land S(x))$$
 \forall introduction

2. Premises:
$$\forall x(P(x) \lor Q(x)), \forall x(\neg Q(x) \lor S(x)), \forall x(R(x) \rightarrow \neg S(x)), \exists x \neg P(x)$$

Conclusion: $\exists x \neg R(x)$

(1)
$$\exists x \neg P(x)$$
 Premise

(2)
$$\neg P(c)$$
 \exists elimination, specific c

(3)
$$\forall x(P(x) \lor Q(x))$$
 Premise

(4)
$$P(c) \vee Q(c)$$
 \forall elimination

(5)
$$\neg P(c) \land (P(c) \lor Q(c))$$
 Conjunction of (2), (4)

(7)
$$\forall x(\neg Q(x) \lor S(x))$$
 Premise

$$(5) \neg P(c) \land (P(c) \lor Q(c))$$

$$(6) \cdot Q(c)$$

(7)
$$\forall x(\neg Q(x) \vee S(x))$$

(8)
$$\neg Q(c) \vee S(c)$$

(9)
$$Q(c) ^ (\neg Q(c) v S(c))$$

$$(10) \cdot S(c)$$

$$(11) \ \forall \ x(R(x) \rightarrow \neg S(x))$$

(12) R(c)
$$\rightarrow \neg$$
S(c)

(13)
$$S(c) \rightarrow \neg R(c)$$

(14)
$$S(c)$$
, $-R(c)$

Conjunction of (2), (4)

Disjunctive Syllogism

Premise

∀ elim.

Conjunction on (6), (8)

Disjunctive syllogism

Premise

∀ elim.

Contrapositive

Modus Ponens (S(c) true from (10))

$$(11) \ \forall \ x(R(x) \rightarrow \neg S(x))$$

(12) R(c)
$$\rightarrow \neg$$
S(c)

(13)
$$S(c) \rightarrow \neg R(c)$$

(14)
$$S(c)$$
, $\neg R(c)$

(15)
$$\exists x \neg R(x)$$

Premise

 \forall elim.

Contrapositive

Modus Ponens (S(c) true from (10))

∃ introduction

Notes on Previous Slides

• Note on \forall elimination: When eliminating \forall , you use an arbitrary value in the domain (what we call a in the previous proofs). Later on, when I eliminate \forall from other premises, I pick that same arbitrary a so that I can combine the statements I've derived. You can introduce \forall again as long as a is still arbitrary (that is, you haven't combined it with an expression that involved an \exists – see next slide).

Notes on Previous Slides

 Note on ∃ elimination: When eliminating ∃, you need to remember that you are picking a specific value in the domain (this is c in our previous proofs). Also, when I eliminate ∀ in part 2 of the second problem, note that I chose c again so that I can combine the two expressions I've derived. This is allowed since \forall implies the expression is true for every value in the domain, including c. However, note that you can't introduce \forall from this, since c is still the specific value that we chose when eliminating \exists .

English Proof Practice

Prove: If n=ab for positive a,b, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Note: Not easy to see how to directly derive $a \le \sqrt{n}$ or $b \le \sqrt{n}$ from n = ab. Therefore we will use a proof by contraposition: $\neg Q(x) \rightarrow \neg P(x)$ instead of $P(x) \rightarrow Q(x)$.

 $P(x) \rightarrow Q(x)$: (n=ab for positive a,b) \rightarrow (a $\leq \sqrt{n}$ or b $\leq \sqrt{n}$)

English Proof Practice

Proof: Assume $\neg(a \le \sqrt{n} \ v \ b \le \sqrt{n})$.

Then a> \sqrt{n} and b> \sqrt{n} by DeMorgan's Law.

Next, multiplying and noting that a and b are both positive (and thus our greater than sign does not get flipped), we get ab $> \sqrt{n} \sqrt{n} = n$.

So ab>n and thus ab \neq n, which is \neg (ab=n).

We have shown $\neg(a \le \sqrt{n} \lor b \le \sqrt{n}) \rightarrow \neg(ab=n)$, which is the contrapositive of $(ab=n) \rightarrow (a \le \sqrt{n})$ v $b \le \sqrt{n}$, which is what we were trying to show.