
CSE 311 Quiz Section: June 6, 2013 (Solutions)

1 Countability
a) An arbitrary rational number can be expressed as p

q , where p and q are both integers and

q 6= 0. As we showed in lecture, integers are countable. Therefore, we can get an enumeration
covering all rational numbers by dovetailing on integers and integers:

1 -1 2 -2 ...
0 0/1 0/− 1 0/2 0/− 2 . . .
1 1/1 1/− 1 1/2 1/− 2 . . .
−1 −1/1 −1/− 1 −1/2 −1/− 2 . . .
2 2/1 2/− 1 2/2 2/− 2 . . .
. . . . . . . . . . . . . . . . . .

Notice that there are multiple representations of each rational number in this table, e.g.
1/1 = −1/− 1 = 2/2... This is fine, the important part is that we will include all possible rational
numbers in our dovetailing.
b) First, we want to show that binary strings are countable. Order binary strings by length, then
sort them lexographically. Our list will be λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . This will cover all
possible binary strings, so binary strings are countable. Therefore, we can get an enumeration
covering all pairs of binary strings by dovetailing on binary strings and binary strings:

λ 0 1 00 ...
λ (λ, λ) (λ, 0) (λ, 1) (λ, 00) . . .
0 (0, λ) (0, 0) (0, 1) (0, 00) . . .
1 (1, λ) (1, 0) (1, 1) (1, 00) . . .
00 (00, λ) (00, 0) (00, 1) (00, 00) . . .
. . . . . . . . . . . . . . . . . .

2 Computability
To show that a problem is undecidable, we can show that if we had a solution to it, we could solve
the halting problem.
Assume for contradiction that we can solve INFINITE. To solve the halting problem, we need to
be able to solve an arbitrary instance of it. Let < P >, x be arbitrary input to the halting
problem, where < P > is the code of a program P and x is the input to that program. For given
P and x, We will define a new program QP,x taking input y as follows:

run P with input x

Notice that QP,x halts if and only if P halts with input x. Furthermore, notice that QP,x

completely ignores its own input y. If P halts on x, then QP,x always halts on all input y, and if
P doens’t halt on x, then QP,x never halts on any input y. Since there are an infinite number of
possible inputs y for QP,x, this is equivalent to saying that P halts on x if and only if QP,x halts
on an infinite number of inputs.

By our assumption, we can solve INFINITE. Solve the instance of INFINITE with QP,x as input.

By the definition of INFINITE, this outputs 1 if Q halts on an infinite number of inputs and 0

otherwise (i.e., Q halts for 0 input, which is a finite number). Since QP,x halts on an infinite

number of inputs if and only if P halts on x, our solution to INFINITE outputs 1 if P halts on x,
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and 0 otherwise. This is a solution to the halting problem, and since we know that the halting

problem is undecidable, we’ve reached a contradiction. Therefore, our assumption is false, and

INFINITE is undecidable.

3 Another Computability Problem
Assume for contradiction that we can solve ONE. Let < P >, x be arbitrary input
to the halting problem, where < P > is the code of a program P and x is the input
to that program. For given P and x, We will define a new program QP,x taking
input ! as follows:

delete every print statement in <P> to create a new program P’

run P’ on x

print 1

The runtime behavior of P ′ will be exactly identical to that of P , except that P ′

will not print any output. Therefore, P ′ halts if and only if P halts. Notice that
since we defined P ′ to never print anything, QP,x prints 1 if and only if P ′

terminates when run on x (if P ′ never terminated, we would never reach the ”print
1” statement). Equivalently, QP,x prints 1 if and only if P terminates when run on
x.
By our assumption, we can solve ONE. Solve the instance of ONE with QP,x as
input. This outputs a 1 if and only if P halts when run on x. This is a solution to
the halting problem, and since we know that the halting problem is undecidable,
we’ve reached a contradiction. Therefore, our assumption is false, and ONE is
undecidable.


