CSE 311 Quiz Section: May 2, 2013 (Solutions)
Proofs by Induction

Say we want to prove that some proposition P(n) is true for each integer n > 1. A proof by
induction consists of five steps:

(1) State what we want to prove: “By induction we will show that P(n) is true for each
integer n > 1.

(2) Base Case: Prove P(1) is true.

(3) Inductive Hypothesis: Assume P(k) is true for some arbitrary integer k > 1.

(4) Inductive Step: Using our inductive hypothesis, prove P(k + 1) is true.

(5) State our Conclusion: “Our result follows from induction.”

1.

Find a formula for the following expression, where n is any positive integer:
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Use induction to prove that your formula is correct.

Solution:
(1) Statement: By induction we will show that for all integers n > 1,

(2) Base Case: n=1

(3) Inductive Hypothesis: Assume that for some arbitrary integer k > 1,
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(4) Inductive Step: We will prove that the statement is true for k + 1.
k+1 k
1 1 1
> (3)-2(5) g
i=1 i=1
By our inductive hypothesis, we can substitute 1 — 2% for Zle (zi)
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(5) Conclusion: By induction, our statement is true for all integers n > 1.

2.

Use induction to prove that for all positive integers n:
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Solution:
(1) Statement: By induction we will show that for all integers n > 1,
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(3) Inductive Hypothesis: Assume that for some arbitrary integer k > 1,
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(4) Inductive Step: We will prove that the statement is true for k + 1.
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By our inductive hypothesis, we can substitute % for Zle ((=1)i1i?):
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(5) Conclusion: By induction, our statement is true for all integers n > 1.
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3.

Prove that for all positive integers n:
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Hint: Try replacing the right hand side of the inequality with something that will make
the statement stronger.

Solution: If we use the problem statement as our inductive hypothesis, then we run into trouble
during our inductive step. For an arbitrary k, if all we know is that Zle (%2) < 2, then it might
actually be 2, in which case adding ﬁ would make it too large. We will have the same
problem no matter what constant we use; we must use an expression dependent on k. To prove
the original statement, we need to first prove a stronger statement by induction.
(1) Statement: By induction we will show that for all integers n > 1,
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(2) Base Case: n=1
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(3) Inductive Hypothesis: Assume that for some arbitrary integer k > 1,
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(4) Inductive Step: We will prove that the statement is true for k + 1.
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By our inductive hypothesis, we can substitute 2 — + for S (%) and maintain the

inequality:
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(5) Conclusion: By induction, for all integers n > 1,
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Finally, we will use the result we just proved to prove our original statement. For all integers
n>1, % >0, so
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Challenge Problem: Horse Paradox

The following “proof” purports to show that all horses are the same color. Where is the error in
the proof?

Statement: We will show that for any group of n horses, where n is a positive integer, all of
them are the same color.

Base Case: n = 1. When there is only one horse in the “group”, then clearly all horses in that
group have the same color.

Inductive Hypotheis: Assume that for some arbitrary integer k, for any group of k& horses, all
of them are the same color.

Inductive step: We will prove that an arbitrary group of k 4+ 1 horses are all the same color.
First, remove one horse. By our inductive hypothesis, the remaining group of k horses are all the
same color. Next, add it back in and remove a different horse. Again, by our inductive hypothesis,
the reamining group of k horses are all the same color. Since each horse we removed was the same
color as the group when we removed the other one, all £ 4 1 horses are the same color.
Conclusion: Any group of n horses are all the same color for any positive integer n. Therefore,
all horses are the same color.

Solution: The error lies in our inductive step. If £k = 1, then we try to prove the statement for
k = 2. If we take an arbitrary group of 2 horses and remove one, the remaining “group” of 1 horse



is indeed a single color. However, if we remove the other horse, there are no horses in common
between the two groups; therefore, we have no guarantee that all horses are the same color. When
performing an inductive step, it is important that the step works for all k£ > 1, or else induction
fails.

An additional explanation of the horse paradox can be found at
https://en.wikipedia.org/wiki/All_horses_are_the_same_color


https://en.wikipedia.org/wiki/All_horses_are_the_same_color

