CSE 311 Quiz Section: May 2, 2013 (Solutions)

Proofs by Induction

Say we want to prove that some proposition $P(n)$ is true for each integer $n \geq 1$. A proof by induction consists of five steps:
(1) State what we want to prove: "By induction we will show that $P(n)$ is true for each integer $n \geq 1$.
(2) Base Case: Prove $P(1)$ is true.
(3) Inductive Hypothesis: Assume $P(k)$ is true for some arbitrary integer $k \geq 1$.
(4) Inductive Step: Using our inductive hypothesis, prove $P(k+1)$ is true.
(5) State our Conclusion: "Our result follows from induction."

1.

Find a formula for the following expression, where n is any positive integer:

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}
$$

Use induction to prove that your formula is correct.

Solution:

(1) Statement: By induction we will show that for all integers $n \geq 1$,

$$
\sum_{i=1}^{n}\left(\frac{1}{2^{i}}\right)=1-\frac{1}{2^{n}}
$$

(2) Base Case: $\mathrm{n}=1$

$$
\sum_{i=1}^{1}\left(\frac{1}{2^{i}}\right)=\frac{1}{2}=1-\frac{1}{2^{1}}
$$

(3) Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$,

$$
\sum_{i=1}^{k}\left(\frac{1}{2^{i}}\right)=1-\frac{1}{2^{k}}
$$

(4) Inductive Step: We will prove that the statement is true for $k+1$.

$$
\sum_{i=1}^{k+1}\left(\frac{1}{2^{i}}\right)=\sum_{i=1}^{k}\left(\frac{1}{2^{i}}\right)+\frac{1}{2^{k+1}}
$$

By our inductive hypothesis, we can substitute $1-\frac{1}{2^{k}}$ for $\sum_{i=1}^{k}\left(\frac{1}{2^{i}}\right)$:

$$
\sum_{i=1}^{k+1}\left(\frac{1}{2^{i}}\right)=1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}}=1-\frac{2}{2^{k+1}}+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k+1}}
$$

(5) Conclusion: By induction, our statement is true for all integers $n \geq 1$.

2.

Use induction to prove that for all positive integers n :

$$
1^{2}-2^{2}+3^{2}-\cdots+(-1)^{n-1} n^{2}=\frac{(-1)^{n-1} n(n+1)}{2}
$$

Solution:

(1) Statement: By induction we will show that for all integers $n \geq 1$,

$$
\sum_{i=1}^{n}\left((-1)^{i-1} i^{2}\right)=\frac{(-1)^{n-1} n(n+1)}{2}
$$

(2) Base Case: $\mathrm{n}=1$

$$
\sum_{i=1}^{1}\left((-1)^{i-1} i^{2}\right)=(-1)^{0} 1^{2}=1=\frac{(-1)^{0} 1(1+1)}{2}
$$

(3) Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$,

$$
\sum_{i=1}^{k}\left((-1)^{i-1} i^{2}\right)=\frac{(-1)^{k-1} k(k+1)}{2}
$$

(4) Inductive Step: We will prove that the statement is true for $k+1$.

$$
\sum_{i=1}^{k+1}\left((-1)^{i-1} i^{2}\right)=\sum_{i=1}^{k}\left((-1)^{i-1} i^{2}\right)+(-1)^{k}(k+1)^{2}
$$

By our inductive hypothesis, we can substitute $\frac{(-1)^{k-1} k(k+1)}{2}$ for $\sum_{i=1}^{k}\left((-1)^{i-1} i^{2}\right)$:

$$
\begin{gathered}
\sum_{i=1}^{k+1}\left((-1)^{i-1} i^{2}\right)=\frac{(-1)^{k-1} k(k+1)}{2}+(-1)^{k}(k+1)^{2} \\
=\frac{-1 *(-1)^{k} k(k+1)}{2}+(-1)^{k}(k+1)^{2} \\
=(-1)^{k}(k+1)\left(\frac{-k+2(k+1)}{2}\right) \\
=(-1)^{k}(k+1)\left(\frac{k+2}{2}\right) \\
=\frac{(-1)^{(k+1)-1}(k+1)(k+2)}{2}
\end{gathered}
$$

(5) Conclusion: By induction, our statement is true for all integers $n \geq 1$.

3.

Prove that for all positive integers n :

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2
$$

Hint: Try replacing the right hand side of the inequality with something that will make the statement stronger.

Solution: If we use the problem statement as our inductive hypothesis, then we run into trouble during our inductive step. For an arbitrary k , if all we know is that $\sum_{i=1}^{k}\left(\frac{1}{i^{2}}\right) \leq 2$, then it might actually be 2 , in which case adding $\frac{1}{(k+1)^{2}}$ would make it too large. We will have the same problem no matter what constant we use; we must use an expression dependent on k. To prove the original statement, we need to first prove a stronger statement by induction.
(1) Statement: By induction we will show that for all integers $n \geq 1$,

$$
\sum_{i=1}^{n}\left(\frac{1}{i^{2}}\right) \leq 2-\frac{1}{n}
$$

(2) Base Case: $\mathrm{n}=1$

$$
\sum_{i=1}^{1}\left(\frac{1}{i^{2}}\right)=\frac{1}{1} \leq 2-\frac{1}{1}
$$

(3) Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$,

$$
\sum_{i=1}^{k}\left(\frac{1}{i^{2}}\right) \leq 2-\frac{1}{k}
$$

(4) Inductive Step: We will prove that the statement is true for $k+1$.

$$
\sum_{i=1}^{k+1}\left(\frac{1}{i^{2}}\right)=\sum_{i=1}^{k}\left(\frac{1}{i^{2}}\right)+\frac{1}{(k+1)^{2}}
$$

By our inductive hypothesis, we can substitute $2-\frac{1}{k}$ for $\sum_{i=1}^{k}\left(\frac{1}{i^{2}}\right)$ and maintain the inequality:

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\frac{1}{i^{2}}\right) \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k}+\frac{1}{(k+1)(k)}=2-\frac{k+1}{(k+1)(k)}+\frac{1}{(k+1)(k)} \\
=2-\frac{(k+1)-1}{(k+1)(k)}=2-\frac{k}{(k+1)(k)}=2-\frac{1}{(k+1)}
\end{aligned}
$$

(5) Conclusion: By induction, for all integers $n \geq 1$,

$$
\sum_{i=1}^{n}\left(\frac{1}{i^{2}}\right) \leq 2-\frac{1}{n}
$$

Finally, we will use the result we just proved to prove our original statement. For all integers $n \geq 1, \frac{1}{n} \geq 0$, so

$$
\sum_{i=1}^{n}\left(\frac{1}{i^{2}}\right) \leq 2-\frac{1}{n} \Rightarrow \sum_{i=1}^{n}\left(\frac{1}{i^{2}}\right) \leq 2
$$

Challenge Problem: Horse Paradox

The following "proof" purports to show that all horses are the same color. Where is the error in the proof?

Statement: We will show that for any group of n horses, where n is a positive integer, all of them are the same color.
Base Case: $n=1$. When there is only one horse in the "group", then clearly all horses in that group have the same color.
Inductive Hypotheis: Assume that for some arbitrary integer k, for any group of k horses, all of them are the same color.
Inductive step: We will prove that an arbitrary group of $k+1$ horses are all the same color. First, remove one horse. By our inductive hypothesis, the remaining group of k horses are all the same color. Next, add it back in and remove a different horse. Again, by our inductive hypothesis, the reamining group of k horses are all the same color. Since each horse we removed was the same color as the group when we removed the other one, all $k+1$ horses are the same color.
Conclusion: Any group of n horses are all the same color for any positive integer n. Therefore, all horses are the same color.

Solution: The error lies in our inductive step. If $k=1$, then we try to prove the statement for $k=2$. If we take an arbitrary group of 2 horses and remove one, the remaining "group" of 1 horse
is indeed a single color. However, if we remove the other horse, there are no horses in common between the two groups; therefore, we have no guarantee that all horses are the same color. When performing an inductive step, it is important that the step works for all $k \geq 1$, or else induction fails.
An additional explanation of the horse paradox can be found at
https://en.wikipedia.org/wiki/All_horses_are_the_same_color

