Section Week 9 Worksheet

Solutions

1) NFA to DFA

Convert the following NFA to DFA.

New start state: {a,c}

 $a,c} \rightarrow \{b,d,e\}$ with a 0 $\{a,c\} \rightarrow null$ with a 1

1) NFA to DFA

 $\{b,d,e\} \rightarrow \{e\} \text{ with a 0}$ $\{b,d,e\} \rightarrow \{d,e\} \text{ with a 1}$ $\{d,e\} \rightarrow \{e\} \text{ with a 0}$ $\{d,e\} \rightarrow \{e\} \text{ with a 1}$ $\{e\} \rightarrow \text{null with a 0}$ $\{e\} \rightarrow \text{null with a 1}$

Final states (all that contain an e): {b,d,e}, {d,e}, {e}

Minimize the following DFA:

Start by dividing into final and non-final states:

G1: {q₀,q₁,q₂} G2: {q₃}

G1: $\{q_0, q_1, q_2\}$ G2: $\{q_3\}$ $q_0 \rightarrow G1$ with 0 $q_2 \rightarrow G1$ with 0 $q_0 \rightarrow G1$ with 1 $q_2 \rightarrow G2$ with 1 $q_1 \rightarrow G1$ with 0 $q_3 \rightarrow G2$ with 0 $q_1 \rightarrow G2$ with 1 $q_3 \rightarrow G2$ with 1 New groups: $\{q_0\}, \{q_1, q_2\}, \{q_3\}$

- $q_0 \rightarrow G2$ with 0 $q_2 \rightarrow G2$ with 0
- $q_0 \rightarrow G2$ with 1 $q_2 \rightarrow G3$ with 1
- $q_1 \rightarrow G2$ with 0 $q_3 \rightarrow G3$ with 0

 $q_1 \rightarrow G3$ with 1 $q_3 \rightarrow G3$ with 1

Groups don't change! Thus we are done.

$[s_0]: \{q_0\} [s_1]: \{q_1, q_2\} [s_2]: \{q_3\}$

Minimized machine:

3) Non-regular Languages

Prove that $\{0^{2n}1^n : n \ge 0\}$ is non-regular.

Proof: We will show that this language is nonregular by showing that there cannot exist a DFA that accepts it.

First, assume that such a DFA *does* exist that accepts this language, and that it has A states. (A must be a finite number because DFAs are finite— it's even part of their name!)

Next, consider the set of strings { λ ,00,0000,...}, i.e. { 0^{2k} : k≥0}.

This set is infinite, so we must have some strings 0^{2k} , 0^{2j} where $k\neq j$ going to the same state. (Since our DFA has A states and |S| is infinite.)

3) Non-regular Languages

Prove that $\{0^{2n}1^n : n \ge 0\}$ is non-regular.

Since 0^{2k}1^k is in our set, it needs to be accepted by our machine. So we must have a path of 1^k that leads to an accept state from our 0^{2k} state.

However, since 0^{2j} and 0^{2k} go to the same state, there is no way for the machine to know which path was taken, so this machine will also have to accept $0^{2j}1^k$. Since $j \neq k$, this string is not in our set.

This is a contradiction, thus our assumption is false, meaning there does not exist a FSM that accepts this language. Thus our language is non-regular. ■