Section Week 9 Worksheet

Solutions

1) NFA to DFA

Convert the following NFA to DFA.

New start state: $\{\mathrm{a}, \mathrm{c}\}$
$\{a, c\} \rightarrow\{b, d, e\}$ with a 0 $\{\mathrm{a}, \mathrm{c}\} \rightarrow$ null with a 1

1) NFA to DFA

$\{b, d, e\} \rightarrow\{e\}$ with a 0 $\{\mathrm{b}, \mathrm{d}, \mathrm{e}\} \rightarrow\{\mathrm{d}, \mathrm{e}\}$ with a 1 $\{\mathrm{d}, \mathrm{e}\} \rightarrow\{\mathrm{e}\}$ with a 0 $\{d, e\} \rightarrow\{e\}$ with a 1
$\{e\} \rightarrow$ null with a 0
$\{e\} \rightarrow$ null with a 1

Final states (all that contain an e): \{b,d,e\}, \{d,e\}, \{e\}

2) State Minimization

Minimize the following DFA:

Start by dividing into final and non-final states:
$\mathrm{G} 1:\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\} \mathrm{G}:\left\{\mathrm{q}_{3}\right\}$

2) State Minimization

G1: $\left\{q_{0}, q_{1}, q_{2}\right\}$ G2: $\left\{q_{3}\right\}$
$\mathrm{q}_{0} \rightarrow \mathrm{G} 1$ with 0
$\mathrm{q}_{2} \rightarrow \mathrm{G} 1$ with 0
$\mathrm{q}_{0} \rightarrow \mathrm{G} 1$ with 1
$\mathrm{q}_{2} \rightarrow \mathrm{G} 2$ with 1
$\mathrm{q}_{1} \rightarrow \mathrm{G} 1$ with 0
$\mathrm{q}_{3} \rightarrow \mathrm{G} 2$ with 0
$\mathrm{q}_{1} \rightarrow \mathrm{G} 2$ with 1
$\mathrm{q}_{3} \rightarrow \mathrm{G} 2$ with 1
New groups: $\left\{q_{0}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{3}\right\}$

2) State Minimization

G1: $\left\{q_{0}\right\}$ G2: $\left\{q_{1}, q_{2}\right\}$ G3: $\left\{q_{3}\right\}$
$\mathrm{q}_{0} \rightarrow \mathrm{G} 2$ with 0
$\mathrm{q}_{2} \rightarrow \mathrm{G} 2$ with 0
$\mathrm{q}_{0} \rightarrow \mathrm{G} 2$ with 1
$\mathrm{q}_{2} \rightarrow$ G3 with 1
$\mathrm{q}_{1} \rightarrow \mathrm{G} 2$ with 0
$\mathrm{q}_{3} \rightarrow$ G3 with 0
$\mathrm{q}_{1} \rightarrow$ G3 with 1
$\mathrm{q}_{3} \rightarrow \mathrm{G} 3$ with 1
Groups don't change! Thus we are done.

2) State Minimization

$\left[s_{0}\right]:\left\{q_{0}\right\}\left[s_{1}\right]:\left\{q_{1}, q_{2}\right\}\left[s_{2}\right]:\left\{q_{3}\right\}$
Minimized machine:

3) Non-regular Languages

Prove that $\left\{0^{2 n} 1^{n}: n \geq 0\right\}$ is non-regular.

Proof: We will show that this language is nonregular by showing that there cannot exist a DFA that accepts it.
First, assume that such a DFA does exist that accepts this language, and that it has A states. (A must be a finite number because DFAs are finite- it's even part of their name!)
Next, consider the set of strings $\{\lambda, 00,0000, \ldots\}$, i.e. $\left\{0^{2 k}: k \geq 0\right\}$.

This set is infinite, so we must have some strings $0^{2 k}, 0^{2 j}$ where $\mathrm{k} \neq \mathrm{j}$ going to the same state. (Since our DFA has A states and $|\mathrm{S}|$ is infinite.)

3) Non-regular Languages

Prove that $\left\{0^{2 n} 1^{n}: n \geq 0\right\}$ is non-regular.
Since $0^{2 k} 1^{k}$ is in our set, it needs to be accepted by our machine. So we must have a path of 1^{k} that leads to an accept state from our $0^{2 \mathrm{k}}$ state. However, since $0^{2 \mathrm{j}}$ and $0^{2 \mathrm{k}}$ go to the same state, there is no way for the machine to know which path was taken, so this machine will also have to accept $0^{2 j} 1^{\mathrm{k}}$. Since $\mathrm{j} \neq \mathrm{k}$, this string is not in our set.
This is a contradiction, thus our assumption is false, meaning there does not exist a FSM that accepts this language. Thus our language is non-regular. ■

