1. Proof with Even and Odd

In class we proved $\forall x \neg(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$ and $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$.
Use these as given to write a formal proof that with those predictes along with $\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$ you can derive $\forall x\left(\operatorname{Odd}\left(x^{2}\right) \rightarrow \operatorname{Odd}(x)\right)$.

2. Proof Practice with Predicate Logic

Apply inference rules to the quantified premises to reach the desired conclusion:

1. Premises: $\quad \forall x(P(x) \rightarrow(Q(x) \wedge S(x)))$
$\forall x(P(x) \wedge R(x))$
Conclusion: $\forall x(R(x) \wedge S(x))$
2. Premises: $\quad \forall x(P(x) \vee Q(x))$

$$
\forall x(\neg Q(x) \vee S(x))
$$

$\forall x(R(x) \rightarrow \neg S(x))$
$\exists x \neg P(x)$
Conclusion: $\exists x \neg R(x)$

3. Extra: English Proof Practice

If $n=a b$ for positive a, b, then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

