Section 4 Worksheet

Solutions

(1) More on Sets

Prove that $A \subseteq B \leftrightarrow B' \subseteq A'$.

Proof: (\rightarrow) Let $A \subseteq B$. Assume an element x is a member of B'. (We want to show $x \in A'$.)

Then x \div B by definition of set complements.

Thus $x \notin A$ because $A \subseteq B$ by assumption, and since $x \notin B \to x \notin A$. (Contrapositive of the definition of subset.)

 \therefore x \in A' by definition of set complement.

So $x \in B' \to x \in A'$, and thus $B' \subseteq A'$ by def. of subset.

(1) More on Sets

Prove that $A \subseteq B \leftrightarrow B' \subseteq A'$.

(←) Let B'⊆ A'. Assume an element x is a member of A. (We want to show $x \in B$.)

Then x \(\psi \) A' by definition of set complements.

Thus $x \notin B$ ' because $B' \subseteq A$ ' by assumption, and since $x \notin A' \to x \notin B$ '. (Contrapositive of the definition of subset.)

 \therefore x \in B by definition of set complement.

So $x \in A \rightarrow x \in B$, and thus $A \subseteq B$ by def. of subset.

(1) More on Sets

Prove that $A \subseteq B \leftrightarrow B' \subseteq A'$.

We have shown $A \subseteq B \rightarrow B' \subseteq A'$ and

 $B' \subseteq A' \rightarrow A \subseteq B$, thus we have proven

$$A \subseteq B \leftrightarrow B' \subseteq A'$$
.

$$A = \{x : x \in \mathbb{R}, x \ge 1\}$$

$$B = \{x : x \in \mathbb{R}, 0 \le x \le 1\}$$

$$C = \{x : x \in \mathbb{R}, -1 \le x \le 1\}$$

(i)
$$f: A \to B, f(x) = \frac{1}{x}$$

One-to-one, but not onto.

(0 ⊆ B, but we can never get 0 by plugging in any value in our domain.)

$$A = \{x : x \in \mathbb{R}, x \ge 1\}$$

$$B = \{x : x \in \mathbb{R}, 0 \le x \le 1\}$$

$$C = \{x : x \in \mathbb{R}, -1 \le x \le 1\}$$

(ii)
$$f: B \rightarrow C, f(x) = x^2$$

One-to-one, but not onto.

(-1 ∈ C, but we can never get -1 by plugging in any value in our domain.)

$$A = \{x : x \in \mathbb{R}, x \ge 1\}$$

$$B = \{x : x \in \mathbb{R}, 0 \le x \le 1\}$$

$$C = \{x : x \in \mathbb{R}, -1 \le x \le 1\}$$

(iii)
$$f: B \rightarrow B, f(x) = x^2$$

Both one-to-one and onto.

(No negatives to worry about in this case, so we don't have the same problem as before for onto. One-to-one because no two values in the domain produce the same output.)

$$A = \{x : x \in \mathbb{R}, x \ge 1\}$$

$$B = \{x : x \in \mathbb{R}, 0 \le x \le 1\}$$

$$C = \{x : x \in \mathbb{R}, -1 \le x \le 1\}$$

(iv)
$$f: C \rightarrow B, f(x) = x^2$$

Onto, but not one-to-one.

(-1 and 1 are both in domain, both produce output of 1.)

(3) Modular Arithmetic

Find an integer a such that:

(i)
$$a \equiv 43 \pmod{23}$$
, $-22 \le a \le 0$

a = -3 (we can check by seeing that 23 | (43-(-3)))

Def: Let a,b be integers, and m be a positive integer. Then $a \equiv b \pmod{m} \longleftrightarrow m \mid (a-b)$.

(3) Modular Arithmetic

Find an integer a such that:

(i)
$$a \equiv 17 \pmod{29}$$
, $-14 \le a \le 14$

a = -12

(Check: 29|-29 ✓)

(3) Modular Arithmetic

Find an integer a such that:

(i)
$$a \equiv -11 \pmod{21}$$
, $90 \le a \le 110$

a = 94

(Check: 21 | 105 ✓)