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Announcements

We’re putting resources on the resources page:

The list of logical equivalences

A Translation Tips reading (for going from English to Logic)
Might be useful if you’re still working on homework 1.

There’s a lot of other resources on the page that will be useful as we get 
further along (e.g. reference sheets for particular topics).

We’ll try to remind you about important ones, but it’s good to keep in 
mind that it’s there.

https://courses.cs.washington.edu/courses/cse311/22sp/resources/
https://courses.cs.washington.edu/courses/cse311/22sp/resources/logicalConnectPoster.pdf
https://courses.cs.washington.edu/courses/cse311/22sp/resources/handout01-translation.pdf


Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ 𝑝 ∨ ¬𝑝 ∧ (¬𝑝 ∨ 𝑞)
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

Associative

Distributive

Negation

Identity

Commutative

Distributive

Commutative

Negation

Commutative

Identity

The last two terms are 

“vacuous truth” – they 

simplify to ¬𝑝

𝑝 no longer matters in 𝑝 ∧
𝑞 if ¬𝑝 automatically 

makes the expression true.



More on Our First Proof

With practice (and quite a bit of squinting) you can see not just the 
ironclad guarantee, but also the reason why something is true.

That’s not easy with a truth table.

Proofs can also communicate intuition about why a statement is true.
We’ll practice extracting intuition from proofs more this quarter.



Modifying Implications



Converse, Contrapositive

How do these relate to each other?

p q p  q q  p p q p q q p

T T

T F

F T

F F

Implication:

p  q

Converse: 

q  p

Contrapositive:

q p

Inverse: 

p q

If it’s raining, then I 

have my umbrella.

If I have my umbrella, 

then it is raining.

If I don’t have my umbrella, 

then it is not raining.

If it is not raining, then I 

don’t have my umbrella.



Converse, Contrapositive

An implication and its contrapositive

have the same truth value!

p q p  q q  p p q p q q p

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T

Implication:

p  q

Converse: 

q  p

Contrapositive:

q p

Inverse: 

p q



Contrapositive

We showed 𝑝 → 𝑞 ≡ ¬𝑞 → ¬𝑝 with a truth table. Let’s do a proof.

Try this one on your own. Remember

1. Know what you’re trying to show.

2. Stay on target – take steps to get closer to your goal.

Hint: think about your tools. 

There are lots of rules with AND/OR/NOT, 

but very few with implications…

pollev.com/uwcse311

Help me adjust my explanation!



Contrapositive

𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞
≡ 𝑞 ∨ ¬𝑝
≡ ¬¬𝑞 ∨ ¬𝑝
≡ ¬𝑞 → ¬𝑝

Law of Implication

Commutativity

Double Negation

Law of Implication

All of our rules deal with ORs and ANDs, let’s switch the implication 

to just use AND/NOT/OR.

And do the same with our target

It’s ok to work from both ends. In fact it’s a very common 

strategy!

Now how do we get the top to look like the bottom? 

Just a few more rules and we’re done!



Work from both ends, but…

…make sure at the end, if you read from top-to-bottom, every step 
makes sense.

When proving an equivalence you must:
1. Start with the left side (or right side)

2. Modify what you had in the last step (using an equivalence)

3. Derive the right side (or left side if you started with the right)

You may not start with the equivalence you’re trying to show, and 
simplify to something “obviously true.” 
More on why later in the quarter, but tl;dr for now is you can’t use your goal as a 
starting assumption (it’s what you’re trying to show! If you knew it, no need to write 
a proof).



Today

More notation

Wrap up digital logic with “standard” ways to read propositions from 
truth tables.

Predicate logic – how do we handle logic with more than one “entity”



On notation…

Logic is fundamental. Computer scientists use it in programs, 
mathematicians use it in proofs, engineers use it in hardware, 
philosophers use it in arguments,….

…so everyone uses different notation to represent the same ideas.

Since we don’t know exactly what you’re doing next, we’re going to 
show you a bunch of them; but don’t think one is “better” than the 
others!



Digital Logic



Digital Circuits

Computing With Logic
T corresponds to 1 or “high” voltage 

F corresponds to 0 or “low” voltage

Gates 
Take inputs and produce outputs (functions)

Several kinds of gates

Correspond to propositional connectives (most of them)



And Gate

p q p  q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Connective AND Gate

q

p
OUTAND

“block looks like D of AND”

p
OUTAND

qp  q

vs.



Or Gate

p q p  q

T T T

T F T

F T T

F F F

p q OUT

1 1 1

1 0 1

0 1 1

0 0 0

OR Connective OR Gate

p
OUTOR

qp  q

vs.

p

q
OR

“arrowhead block looks like V”

OUT



Not Gates

p

NOT Gate

p  p

T F

F T

p OUT

1 0

0 1

vs.NOT Connective

Also called 

inverter

p OUTNOT

p OUTNOT



Blobs are Okay!

p OUTNOT

p
q

OUTAND

p
q

OUTOR

You may write gates using blobs instead of shapes!



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

𝑝 ∧ ¬𝑞 ∨ (¬𝑞 ∧ 𝑟)



More Practice

In Fall Quarters, we spend about half-a-lecture building out a circuit to 
represent a moderately complicated function.

It’s 50% a way to practice with the different notation, 50% fun historical 
context (people used to build circuits by-hand a lot. It’s less common 
now – decent programs exist to do it now).

If you want to get that extra practice, I’ll post an extra video with that 
content. 
But you’ll also have practice in section if you would rather get the content that way.

There are no new principles/ideas here. Only new ways of representing 
them.



More Vocabulary



Vocabulary!

Tautology if it is always true.

Contradiction if it is always false.

Contingency if it can be both true and false.

A proposition is a….

Tautology

If 𝑝 is true, 𝑝 ∨ ¬𝑝 is true; if 𝑝 is false, 𝑝 ∨ ¬𝑝 is true.

Contradiction

If 𝑝 is true, 𝑝⊕ 𝑝 is false; if 𝑝 is false, 𝑝⊕ 𝑝 is false.

Contingency If 𝑝 is true and 𝑞 is true, 𝑝 → 𝑞 ∧ 𝑝 is true; 

If 𝑝 is true and 𝑞 is false, 𝑝 → 𝑞 ∧ 𝑝 is false.

𝑝 ∨ ¬𝑝

𝑝⊕ 𝑝

𝑝 → 𝑞 ∧ 𝑝



Meet Boolean Algebra

Preferred by some mathematicians and circuit designers.

“or” is +

“and” is ⋅ (i.e. “multiply”)

“not” is ‘ (an apostrophe after a variable)

Why?

Mathematicians like to study “operations that work kinda like ‘plus’ and 
‘times’ on integers.”

Circuit designers have a lot of variables, and this notation is more 
compact.



Meet Boolean Algebra

Name Variables “True/False” “And” “Or” “Not” Implication

Java Code boolean b true,false && || ! No special 

symbol

Propositional 

Logic

"𝑝, 𝑞, 𝑟" T, F ∧ ∨ ¬ →

Circuits Wires 1, 0 No special 

symbol

Boolean 

Algebra

𝑎, 𝑏, 𝑐 1,0 ⋅
(“multiplication”)

+
(“addition”)

′
(apostrophe 

after variable) 

No special 

symbol

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ 𝑠 ∨ ¬𝑡 𝑝𝑞𝑟 + 𝑠 + 𝑡′

Propositional logic Boolean Algebra



Comparison

Remember this is just an alternate notation for the same underlying 
ideas.

So that big list of identities? Just change the notation and you get 
another big list of identities!
Sometimes names are different (“involution” instead of “double negation”), but the 
core ideas are the same.

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ 𝑠 ∨ ¬𝑡 𝑝𝑞𝑟 + 𝑠 + 𝑡′

Propositional logic Boolean Algebra



Boolean Algebra



Boolean Algebra



Boolean Algebra



A Few Fun Facts

That you’re not responsible for:

The identities are divided into “axioms” and “theorems”

Mathematicians (and some computer scientists, like me  ) will 
sometimes study what minimum starting points (“the axioms”) will be 
enough to derive all the usual facts we rely on (“the theorems”)
That’s what I meant by “operations that work kinda like plus and times”

For our purposes, we won’t make a distinction here, but we will use 
similar thinking later in the course. 

Boolean algebra makes things like commutativity axioms (starting 
points, things we assume) with propositional logic, we start from the 
truth tables and can derive that commutativity is true. For this class, 
though, it’s a fact you can use either way.



Why ANOTHER way of writing down logic?

This is the third one!?

Because, in your future courses, you’ll use any/all of them. 

Remember there aren’t new concepts here, just new representations.

We mostly use propositional notation (∧,∨, ¬,etc.) but we’ll use them all 
a bit so you’re ready for any of them in your future courses.

Practice in section and on homework.



Canonical Forms

Back to the old notation.



Canonical Forms

A truth table is a unique representation of a Boolean Function.
If you describe a function, there’s only one possible truth table for it.

Given a truth table you can find many circuits and many compound 
prepositions to represent it.
Think back to when we were developing the law of implication…

It would be nice to have a “standard” proposition (or standard circuit) 
we could always write as a starting point.
So we have a (possibly) shorter way of telling if we have the same function.



Using Our Rules

WOW that was a lot of rules.

Why do we need them? Simplification!

Let’s go back to the “law of implication” example. 

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T

When is the implication true? Just “or” each of the three 

“true” lines!

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
Also seems pretty reasonable

So is 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ (¬𝑝 ∨ 𝑞)
i.e. are these both alternative representations of 𝑝 → 𝑞?



Disjunctive Normal Form (DNF)

a.k.a. OR of ANDs

a.k.a Sum-of-Products Form

a.k.a. Minterm Expansion

1. Read the true rows of the truth table

2. AND together all the settings in a given (true) row.

3. OR together the true rows.



Disjunctive Normal Form

𝑝 𝑞 𝐺(𝑝, 𝑞)

T T T

T F F

F T T

F F F

1. Read the true rows of the truth table

2. AND together all the settings in a 

given (true) row.

3. OR together the true rows.
𝑝 ∧ 𝑞

¬𝑝 ∧ 𝑞

𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ 𝑞)



Another Canonical Form

DNF is a great way to represent functions that are usually false.
If there are only a few true rows, the representation is short.

What about functions that are usually true?

Well 𝐺 is equivalent to ¬¬𝐺, and ¬𝐺 is a function that is usually false.

Let’s try taking the Sum-of-Products of ¬𝐺 and negating it.



Another Canonical Form

𝑝 𝑞 𝐺(𝑝, 𝑞) ¬𝐺(𝑝, 𝑞)

T T T F

T F F T

F T T F

F F F T

1. Read the true rows of the truth table

2. AND together all the settings in a 

given (true) row.

3. OR together the true rows.
𝑝 ∧ ¬𝑞

¬𝑝 ∧ ¬𝑞

¬𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ ¬𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
𝐺 𝑝, 𝑞 ≡ ¬[ 𝑝 ∧ ¬𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
𝐺 𝑝, 𝑞 ≡ ¬ 𝑝 ∧ ¬𝑞 ∧ ¬ ¬𝑝 ∧ ¬𝑞

𝐺 𝑝, 𝑞 ≡ [ ¬𝑝 ∨ 𝑞 ∧ 𝑝 ∨ 𝑞 ]

This is not in 

Disjunctive 

Normal Form! 

It’s something 

else, though…



Conjunctive Normal Form

a.k.a. AND of ORs

a.k.a. Product-of-Sums Form

a.k.a. Maxterm Expansion

1. Read the false rows of the truth table

2. OR together the negations of all the settings in the false rows.

3. AND together the false rows.

Or take the DNF of the negation of the function you care about, and 
distribute the negation.



Normal Forms

Don’t simplify any further! Don’t factor anything out (even if you can). 
The point of the canonical form is we know exactly what it looks like, 
you might simplify differently than someone else.

Why? Easier to understand for people.
Inside the parentheses are only ORs between the parentheses are only ANDs (or 
vice versa). 

You’ll use these more in later courses.



Predicate Logic



Predicate Logic

So far our propositions have worked great for fixed objects.

What if we want to say “If 𝑥 > 10 then 𝑥2 > 100.”

𝑥 > 10 isn’t a proposition. Its truth value depends on 𝑥. 

We need a function that can take in a value for 𝑥 and output True or 
False as appropriate.



Predicates

Cat(x):= “x is a cat”

Prime(x) := “x is prime”

LessThan(x,y):= “x<y”

Sum(x,y,z):= “x+y=z”

HasNChars(s,n):= “string s has length n”

Numbers and types of inputs can change. Only requirement is output is 
Boolean.

A function that outputs true or false.

Predicate



Analogy

Propositions were like Boolean variables.

What are predicates? Functions that return Booleans
public boolean predicate(…)



Translation

Translation works a lot like when we just had propositions.

Let’s try it…

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2



Domain of Discourse

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2

Can 𝑥 be 4.5? What about “abc” ?

I never intended you to plug 4.5 or “abc” into 𝑥.

When you read the sentence you probably didn’t imagine plugging 
those values in….



Domain of Discourse

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2

To make sure we can’t plug in 4.5 for 𝑥, predicate logic requires 
deciding on the types we’ll allow 

The types of inputs allowed in our predicates.

Domain of Discourse



Try it…

What’s a possible domain of discourse for these lists of predicates?

1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"



Try it…

What’s a possible domain of discourse for these lists of predicates?

1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"

“Mammals”, “pets”, “dogs and cats”, … 

“positive integers”, “integers”, “numbers”, … 

“objects in the university course enrollment system”, “university 

entities”, “students and courses”, … 

More than one domain of discourse might be reasonable…if it might affect the 

meaning of the statement, we specify it. 



Quantifiers

Now that we have variables, let’s really use them…

We tend to use variables for two reasons:

1. The statement is true for every 𝑥, we just want to put a name on it.

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, such that 𝑝(𝑥) and 
𝑞 𝑥 are both true.



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, 𝑝(𝑥) and 𝑞 𝑥 are 
both true.

“∀𝑥“
“for each 𝑥”, “for every 𝑥”, “for all 𝑥” are common translations

Remember: upside-down-A for All.

Universal Quantifier



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, for which 𝑝(𝑥) and 
𝑞 𝑥 are both true.

“∃𝑥“
“there is an 𝑥”, “there exists an 𝑥”, “for some 𝑥” are common translations

Remember: backwards-E for Exists.

Existential Quantifier



Translations

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧ Odd 𝑦 )
pollev.com/uwcse311

Help me adjust my explanation!



Translations

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧ Odd 𝑦 )

∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

∃𝑥∃𝑦(LessThan 𝑥, 𝑦 )

There is an odd number that is less than 5.

All numbers are both even and odd.



Translations

More practice in section and on homework.

Also a reading on the webpage –
An explanation of why “for any” is not a great way to translate ∀ (even though it 
looks like a good option on the surface)

More information on what happens with multiple quantifiers (we’ll discuss more 
next week).



Evaluating Predicate Logic

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

Is this true?



Evaluating Predicate Logic

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

Is this true?

TRICK QUESTION! It depends on the domain. 

Prime Numbers Positive Integers Odd integers

True False True (vacuously)



One Technical Matter

How do we parse sentences with quantifiers? 
What’s the “order of operations?”

We will usually put parentheses right after the quantifier and variable to 
make it clear what’s included. If we don’t, it’s the rest of the expression.

Be careful with repeated variables…they don’t always mean what you 
think they mean.

∀𝑥 𝑃 𝑥 ∧ ∀𝑥(𝑄 𝑥 ) are different 𝑥’s.



More Practice

Let your domain of discourse be fruits.

There is a fruit that is tasty and ripe.

For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.

∃𝑥(Tasty 𝑥 ∧Ripe 𝑥 )

∀𝑥(¬Ripe 𝑥 → ¬Tasty 𝑥 )

∃𝑥(Sliced 𝑥 ∧ Diced 𝑥 )


