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Announcements

Optional reading on domain restriction on the calendar for today’s 
lecture.

Goes through an example more slowly and explains why the rules are what they 
are.



About Grades

Grades were critical in your lives up until now.
If you were in high school, they’re critical for getting into college.

If you were at UW or CC applying to CSE, they were key to that application

Regardless of where you’re going next, what you learn in this course 
matters FAR more than what your grade is in this course.

If you’re planning on industry – interviews matter more than grades.

If you’re planning on grad school – letters matter most, those are based 
on doing work outside of class building off what you learned in class. 



About Grades

What that means:

The TAs and I are going to prioritize your learning over debating 
whether -2 or -1 is “ more fair”

If you’re worried about “have I explained enough” – write more!

It’ll take you longer to write the Ed question than write the extended 
answer. We don’t take off for too much work. 
And the extra writing is going to help you learn more anyway.



Regrades

TAs make mistakes!

When I was a TA, I made errors on 1 or 2% of my grading that needed 
to be corrected. If we made a mistake, file a regrade request on 
gradescope.

But those are only for mistakes, not for whether “-1 would be more fair”

If you are confused, please talk to us! 
My favorite office hours questions are “can we talk about the best way to do 
something on the homework we just got back?”

If after you do a regrade request on gradescope, you still think a grading was 
incorrect, send email to Robbie.

Regrade requests will close about 1 week after homework is returned.



Today

Continuing two threads:

Quantifiers

Inference Proofs

At the end (maybe) Inference Proofs with quantifiers



Negating Quantifiers

What happens when we negate an expression with quantifiers?

What does your intuition say?

Original
Negation

Every positive integer is prime There is a positive integer that is not prime.

∀𝑥 Prime(𝑥)

Domain of discourse: positive integers

∃𝑥(¬ Prime(𝑥))

Domain of discourse: positive integers



Negating Quantifiers

Let’s try on an existential quantifier…

There is a positive integer which is prime 

and even.

Original Negation

∃𝑥(Prime 𝑥 ∧ Even 𝑥 )

Domain of discourse: positive integers

Every positive integer is composite or odd.

∀𝑥(¬Prime 𝑥 ∨ ¬Even 𝑥 )

Domain of discourse: positive integers

To negate an expression with a quantifier

1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)

2. Negate the expression inside



Negating Quantifiers

You can think of these negations as applications of DeMorgan’s Laws.

Let your domain of discourse be the set containing 𝑑1, 𝑑2, … , 𝑑𝑛.

∃𝑥(𝑃 𝑥 ) is equivalent to 𝑃 𝑑1 ∨ 𝑃 𝑑2 ∨ ⋯∨ 𝑃(𝑑𝑛)

∀𝑥(𝑃 𝑥 ) is equivalent to 𝑃 𝑑1 ∧ 𝑃 𝑑2 ∧ ⋯∧ 𝑃(𝑑𝑛)

Since negating flips ANDs with ORs, it also flips ∃ with ∀.



Negation
Negate these sentences in English and translate the original and 
negation to predicate logic.

All cats have nine lives.

All dogs love every person.

There is a cat that loves someone.

∀𝑥 𝐶𝑎𝑡 𝑥 → 𝑁𝑢𝑚𝐿𝑖𝑣𝑒𝑠 𝑥, 9

∃𝑥(𝐶𝑎𝑡 𝑥 ∧ ¬ 𝑁𝑢𝑚𝐿𝑖𝑣𝑒𝑠 𝑥, 9 ) “There is a cat without 9 lives.”

∀𝑥∀𝑦 𝐷𝑜𝑔 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛(𝑦) → 𝐿𝑜𝑣𝑒 𝑥, 𝑦

∃𝑥∃𝑦(𝐷𝑜𝑔 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦 ) “There is a dog who does not love 

someone.”   “There is a dog and a person such that the dog doesn’t love that person.”

∃𝑥∃𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ 𝐿𝑜𝑣𝑒(𝑥, 𝑦)
∀𝑥∀𝑦([𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ] → ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦 )

“For every cat and every human, the cat does not love that human.”

“Every cat does not love any human” (“no cat loves any human”)



Negation with Domain Restriction

∃𝑥∃𝑦(𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ∧ 𝐿𝑜𝑣𝑒(𝑥, 𝑦)

∀𝑥∀𝑦([𝐶𝑎𝑡 𝑥 ∧ 𝐻𝑢𝑚𝑎𝑛 𝑦 ] → ¬𝐿𝑜𝑣𝑒 𝑥, 𝑦 )

There are lots of equivalent expressions to the second. This one is by far 
the best because it reflects the domain restriction happening. How did 
we get there?
There’s a problem in this week’s section handout showing similar algebra.



Domain Restriction



Why are the rules what they are?

A universal quantifier is a “Big AND”

For a domain of discourse of {𝑒1, 𝑒2, … , 𝑒𝑘}

∀𝑥(𝑃 𝑥 ) means 𝑃 𝑒1 ∧ 𝑃 𝑒2 ∧ ⋯∧ 𝑃(𝑒𝑘)

Now let’s say our domain is {𝑒1, 𝑒2, … , 𝑒𝑘 , 𝑓1, 𝑓2, … , 𝑓𝑗} where 𝑓𝑖 are the 
irrelevant parts of the bigger domain (non-cat-mammals). We want the 
expression to be

𝑃 𝑒1 ∧ 𝑃 𝑒2 ∧ ⋯∧ 𝑃 𝑒𝑘 ∧ 𝑇 ∧ 𝑇…∧ 𝑇

∀𝑥(𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝐷𝑜𝑚𝑎𝑖𝑛 𝑥 → 𝑃 𝑥 ) does that!



Why are the rules what they are?

An existential quantifier is a “Big OR”

For a domain of discourse of {𝑒1, 𝑒2, … , 𝑒𝑘}

∃𝑥(𝑃 𝑥 ) means 𝑃 𝑒1 ∨ 𝑃 𝑒2 ∨ ⋯∨ 𝑃(𝑒𝑘)

Now let’s say our domain is {𝑒1, 𝑒2, … , 𝑒𝑘 , 𝑓1, 𝑓2, … , 𝑓𝑗} where 𝑓𝑖 are the 
irrelevant parts of the bigger domain (non-cat-mammals). We want the 
expression to be

𝑃 𝑒1 ∨ 𝑃 𝑒2 ∨ ⋯∨ 𝑃 𝑒𝑘 ∨ 𝑇 ∨ 𝑇…∨ 𝑇

∃𝑥(𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝐷𝑜𝑚𝑎𝑖𝑛 𝑥 ∧ 𝑃 𝑥 ) does that!



Nested Quantifiers



Everyone is friends with someone. Someone is friends with everyone.

Nested Quantifiers

Translate these sentences using only quantifiers and the predicate AreFriends(𝑥, 𝑦)



Everyone is friends with someone. Someone is friends with everyone.

Nested Quantifiers

Translate these sentences using only quantifiers and the predicate AreFriends(𝑥, 𝑦)

∀𝑥(∃𝑦 AreFriends(𝑥, 𝑦)) ∃𝑥(∀𝑦 AreFriends(𝑥, 𝑦))

∀𝑥∃𝑦 AreFriends(𝑥, 𝑦) ∃𝑥∀𝑦 AreFriends(𝑥, 𝑦)



Nested Quantifiers

∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

“For every 𝑥 there exists a 𝑦 such that 𝑃 𝑥, 𝑦 is true.”

𝑦 might change depending on the 𝑥 (people have different friends!).

∃𝑥∀𝑦 𝑃(𝑥, 𝑦)

“There is an 𝑥 such that for all 𝑦, 𝑃(𝑥, 𝑦) is true.”

There’s a special, magical 𝑥 value so that 𝑃 𝑥, 𝑦 is true regardless of 𝑦.



Nested Quantifiers

Let our domain of discourse be 
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

And our proposition 𝑃(𝑥, 𝑦) be 
given by the table.

What should we look for in the table?

∃𝑥∀𝑦𝑃 𝑥, 𝑦

∀𝑥∃𝑦𝑃(𝑥, 𝑦)

𝑃(𝑥, 𝑦) A B C D E

A T T T T T

B T F F T F

C F T F F F

D F F F F T

E F F F T F

𝑦

𝑥



Nested Quantifiers

Let our domain of discourse be 
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

And our proposition 𝑃(𝑥, 𝑦) be 
given by the table.

What should we look for in the table?

∃𝑥∀𝑦𝑃 𝑥, 𝑦

A row, where every entry is T

∀𝑥∃𝑦𝑃(𝑥, 𝑦)

In every row there must be a T

𝑃(𝑥, 𝑦) A B C D E

A T T T T T

B T F F T F

C F T F F F

D F F F F T

E F F F T F

𝑦

𝑥



Keep everything in order

Keep the quantifiers in the same order in English as they are in the 
logical notation.

“There is someone out there for everyone” is a ∀𝑥∃𝑦 statement in 
“everyday” English. 

It would never be phrased that way in “mathematical English” We’ll only 
ever write “for every person, there is someone out there for them.”



Try it yourselves

Every cat loves some human. There is a cat that loves every human.

Let your domain of discourse be mammals. 
Use the predicates Cat(𝑥), Dog(𝑥), and Loves(𝑥, 𝑦) to mean 𝑥 loves 𝑦.



Try it yourselves

Every cat loves some human. There is a cat that loves every human.

∀𝑥 (Cat 𝑥 → ∃𝑦[Human(𝑦) ∧Loves(𝑥, 𝑦)])

∀𝑥∃𝑦(Cat 𝑥 → [Human(𝑦) ∧ Loves(𝑥, 𝑦)]) ∃𝑥 (Cat 𝑥 ∧ ∀𝑦[Human 𝑦 →Loves(𝑥, 𝑦)])

∃𝑥∀𝑦(Cat 𝑥 ∧ [Human(𝑦) → Loves(𝑥, 𝑦)])



Negation

How do we negate nested quantifiers?

The old rule still applies.

To negate an expression with a quantifier

1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)

2. Negate the expression inside

¬(∀𝑥∃𝑦∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥(¬ ∃𝑦∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥∀𝑦(¬ ∀𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥∀𝑦∃𝑧(¬ 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑦, 𝑧 )

∃𝑥∀𝑦∃𝑧[¬𝑃 𝑥, 𝑦 ∨ ¬𝑄 𝑦, 𝑧 ]



More Translation

For each of the following, translate it, then say whether the statement is 
true. Let your domain of discourse be integers.

For every integer, there is a greater integer.

There is an integer 𝑥, such that for all integers 𝑦, 𝑥𝑦 is equal to 1.

∀𝑦∃𝑥(Equal 𝑥 + 𝑦, 1 )

∀𝑥∃𝑦(Greater(𝑦, 𝑥)) (This statement is true: 𝑦 can be 𝑥 + 1 [𝑦 depends on 𝑥])

∃𝑥∀𝑦(Equal(𝑥𝑦, 1)) (This statement is false: no single value of 𝑥 can play 

that role for every 𝑦.)

For every integer, 𝑦, there is an integer 𝑥 such that 𝑥 + 𝑦 = 1
(This statement is true, 𝑦 can depend on 𝑥



Inference Proofs and the Direct 
Proof Rule



Try it yourselves

Suppose you know 𝑝 → 𝑞,¬𝑠 → ¬𝑞,and 𝑝.
Give an argument to conclude 𝑠.

1. 𝑝 → 𝑞
2. ¬𝑠 → ¬𝑞
3. 𝑝
4. 𝑞
5. 𝑞 → 𝑠
6. 𝑠

Given

Given

Given

Modus Ponens 1,3

Contrapositive of 2

Modus Ponens 5,4



More Inference Rules

In total, we have two for ∧ and two for ∨, one to create the connector, 
and one to remove it.

None of these rules are surprising, but they are useful.

𝐴 ∧ 𝐵

𝐴, 𝐵∴
Eliminate ∧

𝐴 ∨ 𝐵,¬𝐴

𝐵∴
Eliminate ∨

𝐴; 𝐵

𝐴 ∧ 𝐵∴
Intro ∧

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨



The Direct Proof Rule

We’ve been implicitly using another “rule” today, the direct proof rule

Write a proof “given 𝐴 conclude 𝐵” 𝐴 ⇒ 𝐵

𝐴 → 𝐵𝐴 → 𝐵

Direct Proof 

rule

This rule is different from the others – 𝐴 ⇒ 𝐵 is not a “single fact.”

It’s an observation that we’ve done a proof. (i.e. that we showed fact 𝐵 starting 

from 𝐴.)

We will get a lot of mileage out of this rule…starting right now.



How would you argue…

Let’s say you have a piece of code.

And you think if the code gets null input then a nullPointerExecption will 
be thrown.

How would you convince your friend?

You’d probably trace the code, assuming you would get null input. 

The code was your given

The null input is an assumption  



In general

How do you convince someone that 𝑝 → 𝑞 is true given some 
surrounding context/some surrounding givens?

You suppose 𝑝 is true (you assume 𝑝)

And then you’ll show 𝑞 must also be true.
Just from 𝑝 and the Given information.



The Direct Proof Rule

Write a proof “given 𝐴 conclude 𝐵” 𝐴 ⇒ 𝐵

𝐴 → 𝐵𝐴 → 𝐵

Direct Proof 

rule

This rule is different from the others – 𝐴 ⇒ 𝐵 is not a “single fact.”

It’s an observation that we’ve done a proof. (i.e. that we showed fact 𝐵 starting 

from 𝐴.)

We will get a lot of mileage out of this rule…starting today!



Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ (1)

Eliminate ∧ (1)

Given???

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule



Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ 1

Eliminate ∧ (1)

Given ????

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Proofs are supposed to be lists of facts. 

Some of these “facts” aren’t really facts…

These facts depend on 𝑝. 

But 𝑝 isn’t known generally. 

It was assumed for the 

purpose of proving 𝑝 → 𝑟.

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)



Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ 1

Eliminate ∧ (1)

Given ????

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Proofs are supposed to be lists of facts. 

Some of these “facts” aren’t really facts…

These facts depend on 𝑝. 

But 𝑝 isn’t known generally. 

It was assumed for the 

purpose of proving 𝑝 → 𝑟.

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)



Here’s a corrected version of the proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟
4.1 𝑝

4.2 𝑞

4.3 𝑟

5. 𝑝 → 𝑟

Given

Eliminate ∧ 1
Eliminate ∧ 1

Assumption
Modus Ponens 4.1,2
Modus Ponens 4.2,3

Direct Proof Rule

When introducing an assumption 

to prove an implication:

Indent, and change numbering.

When reached your 

conclusion, use the Direct 

Proof Rule to observe the 

implication is a fact.

The conclusion is an unconditional fact (doesn’t 

depend on 𝑝) so it goes back up a level

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)



Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟. 
Show: 𝑠 → 𝑝



Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟. 
Show: 𝑠 → 𝑝

1. 𝑝 ∨ 𝑞
2. 𝑟 ∧ 𝑠 → ¬𝑞
3. 𝑟

4.1 𝑠
4.2 𝑟 ∧ 𝑠
4.3 ¬𝑞
4.4 𝑞 ∨ 𝑝
4.5 𝑝

5. 𝑠 → 𝑝

Given

Given

Given

Assumption

Intro ∧ (3,4.1)

Modus Ponens (2, 4.2)

Commutativity (1)

Eliminate ∨ (4.4, 4.3)

Direct Proof Rule



Inference Rules

𝐴 ∧ 𝐵

𝐴, 𝐵∴
Eliminate ∧

𝐴 ∨ 𝐵,¬𝐴

𝐵∴
Eliminate ∨

𝐴; 𝐵

𝐴 ∧ 𝐵∴
Intro ∧

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨

𝐴 ⇒ 𝐵

𝐴 → 𝐵

Direct Proof 

rule

𝑃 → 𝑄; 𝑃

𝑄∴

Modus 

Ponens

You can still use all the 

propositional logic 

equivalences too!



Inference Proofs in Predicate Logic



Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic. 

To include predicate logic, we’ll need some rules about how to use 
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Let’s see a good example, then come back to those “arbitrary” and “fresh” 
conditions.



Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[ 𝑃 𝑦 → 𝑄 𝑦 ]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[ 𝑃 𝑦 → 𝑄 𝑦 ]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[ 𝑃 𝑦 → 𝑄 𝑦 ]. Conclude ∃𝑥𝑄(𝑥).

1. ∃𝑥𝑃(𝑥)
2. 𝑃(𝑎)
3. ∀𝑦[𝑃 𝑦 → 𝑄 𝑦 ]
4. 𝑃 𝑎 → 𝑄(𝑎)
5. 𝑄(𝑎)
6. ∃𝑥𝑄(𝑥)

Given

Eliminate ∃ 1

Given

Eliminate ∀ 3

Modus Ponens 2,4

Intro ∃ 5 ∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic. 

To include predicate logic, we’ll need some rules about how to use 
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“arbitrary” means 𝑎 is “just” a variable in our domain. 

It doesn’t depend on any other variables and wasn’t introduced 

with other information.



Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic. 

To include predicate logic, we’ll need some rules about how to use 
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“fresh” means 𝑐 is a new symbol (there isn’t another 𝑐
somewhere else in our proof).



Fresh and Arbitrary

1. ∃𝑥 𝑃 𝑥

2. 𝑃(𝑎)

3. ∀𝑥 𝑃(𝑥)

Given

Eliminate ∃ (1)

Intro ∀ (2)

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

This proof is definitely wrong.

(take 𝑃(𝑥) to be “is a prime number”)

Suppose we know ∃𝑥𝑃 𝑥 . Can we conclude ∀𝑥𝑃 𝑥 ?

𝑎 wasn’t arbitrary. We knew something about 

it – it’s the 𝑥 that exists to make 𝑃 𝑥 true.



Fresh and Arbitrary

You can trust a variable to be arbitrary if you introduce it as such.

If you eliminated a ∀ to create a variable, that variable is arbitrary. 
Otherwise it’s not arbitrary – it depends on something.

You can trust a variable to be fresh if the variable doesn’t appear 
anywhere else (i.e. just use a new letter) 

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Fresh and Arbitrary

There are no similar concerns with these two rules.

Want to reuse a variable when you eliminate ∀? Go ahead.

Have a 𝑐 that depends on many other variables, and want to intro ∃?

Also not a problem.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃



Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦 ]. Let’s prove it!!



Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦 ]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐
1.3 Let 𝑎 be arbitrary.

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

--

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule



Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦 ]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule

It is not required to have “variable is 

arbitrary” as a step before using it. 

But many people (including Robbie) 

find it helpful.



Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. 𝑏 ≥ 𝑎

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5) 

Let your domain of discourse be integers. 

We claim that given ∀𝑥∃𝑦 Greater 𝑦, 𝑥 , we can conclude ∃𝑦∀𝑥 Greater(𝑦, 𝑥)
Where Greater(𝑦, 𝑥) means 𝑦 > 𝑥



Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. 𝑏 ≥ 𝑎

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5) 

𝑏 is not arbitrary. The variable 𝑏 depends on 𝑎. Even though 𝑎 is 

arbitrary, 𝑏 is not!



Bug Found

There’s one other “hidden” requirement to introduce ∀.

“No other variable in the statement can depend on the variable to be 
generalized”

Think of it like this -- 𝑏 was probably 𝑎 + 1 in that example.

You wouldn’t have generalized from Greater(𝑎 + 1, 𝑎)

To ∀𝑥 Greater(𝑎 + 1, 𝑥). There’s still an 𝑎, you’d have replaced all the 𝑎’s. 

𝑥 depends on 𝑦 if 𝑦 is in a statement when 𝑥 is introduced.

This issue is much clearer in English proofs, which we’ll start next time.



More Practice



More Practice

Show if we know: 𝑝, 𝑞, 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 , 𝑟 → 𝑡 we can conclude 𝑡.



More Practice

Show if we know: 𝑝, 𝑞, 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 , 𝑟 → 𝑡 we can conclude 𝑡.

1. 𝑝
2. 𝑞
3. [ 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 ]
4. 𝑟 → 𝑡
5. 𝑝 ∧ 𝑞
6. 𝑟 ∧ 𝑠
7. 𝑟
8. 𝑡

Given

Given

Given

Given

Intro ∧ (1,2)

Modus Ponens (3,5)

Eliminate ∧ (6)

Modus Ponens (4,7)


