Our First Proof

$$(a \land b) \lor (\neg a \land b) \lor (\neg a \land \neg b) \equiv$$

None of the rules look like this

Practice of Proof-Writing: **Big Picture**...WHY do we think this might be true?

The last two "pieces" came from the vacuous proof lines...maybe the " $\neg a$ " $\equiv (\neg a \lor b)$ came from there? Maybe that simplifies down to $\neg a$

Simplify $\mathbb{T} \wedge (\neg a \vee b)$ to $(\neg a \vee b)$

These identities hold for all propositions p, q, r

- Identity
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \wedge q \equiv q \wedge p$

- Associative
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv T$
 - $p \land \neg p \equiv F$

Vocabulary!

A proposition is a....

Tautology if it is always true.

Contradiction if it is always false.

Contingency if it can be both true and false.

 $p \lor \neg p$

Tautology

If p is true, $p \lor \neg p$ is true; if p is false, $p \lor \neg p$ is true.

 $p \oplus p$

Contradiction

If p is true, $p \oplus p$ is false; if p is false, $p \oplus p$ is false.

 $(p \rightarrow q) \land p$

Contingency If p is true and q is true, $(p \rightarrow q) \land p$ is true; If p is true and q is false, $(p \rightarrow q) \land p$ is false.

Meet Boolean Algebra

Name	Variables	"True/False"	"And"	"Or"	"Not"	Implication
Java Code	boolean b	true, false	& &	11	!	No special symbol
Propositional Logic	"p, q, r"	T, F	٨	V	٦	\rightarrow
Circuits	Wires	1, 0	And	Or	hat	No special symbol
Boolean Algebra	a, b, c	1,0	("multiplication")	+ ("addition")	(apostrophe after variable)	No special symbol

Propositional logic

 $(p \land q \land r) \lor s \lor \neg t$

Boolean Algebra

pqr + s + t'