d any mor hIpmy

And remember, if you
’Loor is ALWAYS open \’a*’e Wa rm up translate 1{e)

predicate logic:
‘For_every x, it x is prime,
then x isoddorx = 2"

e (@r O QW\ B“‘%
ngfed%k \/ET‘U\ b&w

Quantifiers

CSE 311 Fall 23
Lecture 6

Announcements

HW?2 Problem 2 has a bug.
We're working on how to fix it (probably clarification/an extra hint on
part).

We'll send everyone an email on Ed (and update the pdf on the
webpage) when it's fixed.

Today

More on quantifiers

What happens when we want to talk about just part of our domain of
discourse?

Vv, 3 in the same sentence

How do we negate a quantified sentence?

Where were we?

A predicate is a function that outputs a Boolean
Prime (x) := "x IS prime”

LessThan (x, y):= "x<y"

The "domain of discourse” is the set of all values your variables can take.

——

Usually the “type” you're allowing

Quantifiers

We have two extra symbols to indicate which way we're using the
variable.

The statement is true for every x, we just want to put a name on it.

Vx (p(x) A g(x)) means “for every x in our domain, p(x) and q(x) both
evaluate to true’”

There's some x out there that works, (but | might not know which it
s, so I'm using a variable).

Ax(p(x) A g(x)) means “there is an x in our domain, such that p(x) and
q(x) are both true.

Quantifiers

We have two extra symbols to indicate which way we're using the
variable.

1. The statement is true for every x, we just want to put a name on it.

Vx (p(x) A g(x)) means “for every x in our domain, p(x) and q(x) both
evaluate to true.”

Universal Quantifier

II\U/:XS“

n u n u

“for each x", "for every x", “for all x" are common translations
Remember: upside-down-A for All.

Quantifiers

Existential Quantifier

11 3 x“

n u n u

“there is an x"”, “there exists an x”, “for some x" are common translations
Remember: backwards-E for Exists.

2. There's some x out there that works, (but | might not know which it
s, so I'm using a variable).

Ax(p(x) A g(x)) means “there is an x in our domain, for which p(x) and
q(x) are both true.

Translations @Qsmobvxi A\\ (/%j \f\\m\\(j@(g

“For every x, if x is even, then x = 2 T

“There are x,y such thatx < y”
(Jdx (0dd(x) A LessThan(x,5))

@ (Even(y) A Odd(»))

pollev.corn /robbie

Help me adjust my explanation!

Translations

“For every x, if x is even, then x = 2
Vx(Even(x) »Equal(x,2))

“There are x,y such thatx < y"
JIx3Ay(LessThan(x,y))

dx (Odc@ A LessThan(x, 5))

,QThere is an odd number that is less than 5.

y (Even(y) A Odd(y))
All number?‘g're both even and odd.

(‘>

Translations

More practice in section and on homework.

Also a reading on the webpage —

An explanation of why “for any” is not a great way to tranen though it
looks like a good optiomormr tire~sdrface)

More information on what happens with multiple quantifiers (we'll discuss more on
Wednesday).

Evaluating Predicate Logic

__/"\/______,-
"For every x, if x is even, then x = 2" / Vx(Even(x) »Equal(x,2))

s this true?

Evaluating Predicate Logi

“For every x, if x is even, then x = 2" / Vx(Even(x) »Equal(x,2))
s this true?
TRICK QUESTION! It depends on the domain.

Prime Numbers Positive Integers Odd integers

—_~— - v/—\ -~

True False True (vacuously)

One Technical Matter

How do we parse sentences with quantifiers?
What's the “order of operations?”

We will usually put parentheses right after the quantifier and variable to
make it clear what's included. If we don't, it's the rest of the expression.

Be careful with repeated variables...they don't always mean what you

Vx(P(O) A ¥X(000)
X X NVX X are
[

Nferent x's.

Bound Variables

What happens if we repeat a variable?

Whenever you introduce a new quantifier with an already existing
variable, it “takes over” that name until its expression ends.

4 R
Vi (P(x) A Vx[Q(x)] AR(xX))
v
It's common (albeit sorﬁ\ewl@:onfusin Ice to reuse a variables

when it “wouldn’t matter”.

Never do something like the above: where a single name switches from
gold to purple back to gold. Switching from gold to purple only is
usually fine...but names are cheap.

More Practice

Let your domain of discourse be fruits. Translate these
There is a fruit that is tasty and ripe.
For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.

More Practice

Let your domain of discourse be fruits. Translate these

There is a fruit that is tasty and ripe.
dx(Tasty(x) ARipe(x))

For every fruit, if it is not ripe then it is not tasty.
Vx(—Ripe(x) » ~Tasty(x))

There is a fruit that is sliced and diced.
dx(Sliced(x) A Diced(x))

~ ' Domain Restriction

——

—_—

Quantifiers

v (for All) and 3 (there Exists)

Write these statements in predicate logic with quantifiers. Let your
domain of discourse be “cats”

N This sentence implicitly makes a statement about all cats!
If a cat is fat, then it is happy.

Vx[Fat(x) - Happy(x)]

S~ -

Quantifiers

Writing implications can be tricky when we change the domain of

discou rH

\For every cat: it the cat is fat, then it is Pw

Domain of Discourse: cats Vx[Fat(x) - Happy(x)]

What if we change our domain of discourse all mammarls?
We need to limit x to be a cat. How do we do that —

Vx[(Cat(x) A Fat(x)) »Happy(x)] Vx[Cat(x) A (Fat(x) »Happy(x))]

— \ —

Quantifiers (ﬂ_ﬁ (@Xb (’p)\j)J

Which of these translates “For every cat: if a cat is fat th&n it is happy.”
when our domain of discourse is “mammals”? _F:/s

(Fat(x) *Happy(s)]
For all mammals, if x is a cat and fat For all mammals, that mammal is a cat
then it is happy and if it is fat then it is happy.
[if x is not a cat, the claim is vacuously [what if x is a dog? Dogs are in the
true, you can't use the promise for domain, but...uh-oh. This isn't what we
anything] meant.] > N ﬁx/j
To “limit” variables to a portion of your domain of discourse O&

under a universal quantifier add a hypothesis to an implication.

Quantifiers

Existential quantifiers need a different rule:

To “limit” variables to a portion of your domain of discourse under an existential

quantifier AND the limitation together with the rest of the statement.

There is a dog who is not happy.
\ /

Domain of discourse: dogs

3x(— Happy(x))

Quantifiers

Which of these translates “There is a dog who is not happy.”

when our domain of discourse is “mammals”?
Elx[hDog(x) A Happy(x)

Jdx[Dog(x) — ﬂHappy(xi?]

There is @ mammal, such that if x is a There is a mammal that'is both a dog
dog then it is not happy. and not happy.
[this can't be right — plug in a cat for x [this one is correct!]

and the implication is true]

To “limit" variables to a portion of your domain of discourse under an existential

quantifier AND the limitation together with the rest of the statement.

Why are the rules what they are?

A universal quantifier is a “Big AND"
For a domain of discourse of {e;, e,, ..., e}

Vx(P(x)) means P(e;) AN P(e;) A--AP(ey)
———

Now let's say our domain is {ey, e,, ..., ex{f1

irrelevant parts of the bigger domain (n]

expression to be
P(e,)) AP(e;)AN--ANP(e,,)ATAT ..AT

Vx(RightSubDomain(x) — P(oes that!

N Where f; are the
als). We want the

Why are the rules what they are?

An existential quantifier is a “Big OR”"
For a domain of discourse of {e;, e,, ..., e}
3x(P(x)) means P(e;) V P(e,) V-V P(ey)

Now let’s say our domain is {ey, e, ..., €, f1, f2, ..., fj} where f; are the
irrelevant parts of the bigger domain (non-cat-mammals). We want the
expression to be

P(e) VP (e,) V-V P(e)VFVE .V N

Ax(RightSubDomain(x) A P(x)) does that!

Negating Quantifiers

What happens when we negate an expression with quantifiers?

What does your intuition say?

" Negation
Original J
Every positive integer is prime There is a positive integer that is not prime.
Vx Prime(x) Ax(— Prime(x))

Domain of discourse: positive integers Domain of discourse: positive integers

Negating Quantifiers

Let's try on an existential quantifier...

. Original | . Negation |
There is a positive integer which is prime Every positive integer is composite or odd.
and even.
dx(Prime(x) A Even(x)) Vx(—=Prime(x) V mEven(x))
Domain of discourse: positive integers Domain of discourse: positive integers

To negate an expression with a quantifier

1. Switch the quantifier (V becomes 3, 3 becomes V)
2. Negate the expression inside

Negation

Translate these sentences to predicate logic, then negate them.

All cats have nine lives.
Vx(C at(x) » NumLives(x, 9))
Ax(Cat(x) A —I(NumLiveS(x, 9))) “There is a cat without 9 lives.
All dogs love every person.
VxVy(Dog(x) A Human(y) — Love(x, y))
Ix3y(Dog(x) A Human(y) A =Love(x,y)) "There is a dog who does not love
someone.” “There is a dog and a person such that the dog doesn't love that person.”

There is a cat that loves someone.

Ax3y(Cat(x) A Human(y) A Love(x,y)
VxVy(Cat(x) A Human(y) - —Love(x,y))
"For every cat and every human, the cat does not love that human.”’
"Every cat does not love any human” (“no cat loves any human”)

Negation with Domain Restriction

Ax3Ay(Cat(x) A Human(y) A Love(x,y)
VxVy([Cat(x) AN Human(y)] = —Love(x,y))

There are lots of equivalent expressions to the second. This one is by far
the best because it reflects the domain restriction happening. How did
we get there?

There's a problem in this week’s section handout showing similar algebra.

‘ Wuantifiers
/

Nested Quantifiers 52

ne is friends with
N
)

Nested Quantifiers

Translate these sentences using only quantifiers and the predicate AreFriends(x,y)

@» ne is friends vvi ne. Someone is friends with everyone.

A

Vxdy AreFriends(x, dxVy AreFriends(x,
y y =)_’ y

——

Nested Quantifiers

Vx3y P(x,y)
"For every x there exists a y such that P(x, y) is true.”
y might change depending on the x (people have different friends!).

AxVy P(x,y)
“There is an x such that for all y, P(x, y) is true.”

There's a special, magical x value so that P(x, y) is true regardless of y.

Nested Quantifiers

Let our domain of discourse be

A -ﬂ-ﬂ-
And our proposition P(x,y) be

given by the table.
What should we look for in the table?

AxVyP(x,y)

Vx3yP(x,y)

T B
T S
I R
= I R R
T > =

Nested Quantifiers

Let our domain of discourse be y
{A,B,C,D,E}

And our proposition P(x,y) be
given by the table.

What should we look for in the table?

AxVyP(x,y) !
A row, where every entry is T

Vx3yP(x,y)

In every row there must be a T

Keep everything in order

Keep the quantifiers in the same order in English as they are in the
logical notation.

“There is someone out there for everyone” is a Vx3y statement in
"‘everyday” English.

It would never be phrased that way in "mathematical English” We'll only
every write “for every person, there is someone out there for them”

Try 1t yourselves

Every cat loves some human. There is a cat that loves every human.

¥ ™ % :
- i\
@\Zg N

, P dh o
Gl > -

Let your domain of discourse be mammals.
Use the predicates Cat(x), Dog(x), and Loves(x,y) to mean x loves y.

Try it yourselves

Every cat loves some human. There is a cat that loves every human.

W ™ I} :
@\/Zg \ﬁ/m

Gl - -
>
dh

Vx (Cat(x) —» dy[Human(y) ALoves(x,y)])

Vx3y(Cat(x) — [Human(y) ALoves(x,¥)]) 3y (Cat(x) AVy[Human(y) »Loves(x,y)])
dxVy(Cat(x) A [Human(y) — Loves(x,y)])

Negation

How do we negate nested quantifiers?
The old rule still applies.

To negate an expression with a quantifier

1. Switch the quantifier (Vv becomes 3, 3 becomes V)
2. Negate the expression inside

~(Vx3yvz [P(x,y) AQ(y,2)])
Ax(—(3yVz [P(x,y) AQ(y,2)]))
AxVy (=(Vz[P(x,y) A Q(¥,2)]))
AxVy3Az(=[P(x,y) AQ(y,2)])
AxVy3z[-P(x,y) V =Q(y, z)]

More Translation

For each of the following, translate it, then say whether the statement is
true. Let your domain of discourse be integers.

For every integer, there is a greater integer.
Vx3y(Greater(y,x)) (This statement is true: y can be x + 1 [y depends on x])

There is an integer x, such that for all integers y, xy is equal to 1.
JxVy(Equal(xy,1)) (This statement is false: no single value of x can play

that role for every y.)

Vydx(Equal(x +y,1))
For every integer, y, there is an integer x such thatx +y =1
(This statement is true, y can depend on x)

