
Induction CSE 311 Autumn 2023

Lecture 15



Announcements

We inadvertently posted drafts of the HW5 solutions on the webpage 
over the weekend. We’re going to leave them up so everyone is on 
equal footing. (Replacing just Part 2 problems tomorrow).

They were drafts. Some solutions are still sketchy
4e was written for directions that didn’t allow the number theory reference sheet

Likely some arithmetic errors, formatting errors, etc. lurking. 

We’re really going to grade what you submit. 

For the proofs, we expect writeups will still differ between students (just 
like when you write code independently, some things come out 
differently) [For, e.g., the gcd calculations, we know independent 
solutions may end up looking identical]



How do we know recursion works?

//Assume i is a nonnegative integer

//returns 2^i.

public int CalculatesTwoToTheI(int i){

if(i == 0)

return 1;

else

return 2*CaclulatesTwoToTheI(i-1);

}

Why does CalculatesTwoToTheI(4) calculate 2^4?

Convince the people around you!



How do we know recursion works?

Something like this:

Well, as long as CalculatesTwoToTheI(3) = 8, we get 16…

Which happens as long as CalculatesTwoToTheI(2) = 4

Which happens as long as CalculatesTwoToTheI(1) = 2

Which happens as long as CalculatesTwoToTheI(0) = 1

And it is! Because that’s what the base case says.



How do we know recursion works?

There’s really only two cases.

CalculatesTwoToTheI(0) = 1 (which it should!)

And that means CalculatesTwoToTheI(1) = 2, (like it should)

And that means CalculatesTwoToTheI(2) = 4, (like it should)

And that means CalculatesTwoToTheI(3) = 8, (like it should)

And that means CalculatesTwoToTheI(4) = 16, (like it should)

The Base Case is Correct

IF the recursive call we make is correct 

THEN our value is correct.



How do we know recursion works?

The code has two big cases,

So our proof had two big cases

“The base case of the code produces the correct output”

“IF the calls we rely on produce the correct output THEN the current call 
produces the right output” 



A bit more formally…

“The base case of the code produces the correct output”

“IF the calls we rely on produce the correct output THEN the current call 
produces the right output” 

Let 𝑃(𝑖) be “CalculatesTwoToTheI(i) returns 2𝑖.”

How do we know 𝑃(4)?

𝑃(0) is true.

And 𝑃 0 → 𝑃(1), so 𝑃 1 .

And 𝑃 1 → 𝑃(2), so 𝑃 2 .

And 𝑃 2 → 𝑃(3), so 𝑃 3 .

And 𝑃 3 → 𝑃(4), so 𝑃 4 .



A bit more formally…

This works alright for 𝑃(4).

What about 𝑃 1000 ? 𝑃(1000000000)? 

At this point, we’d need to show that implication 𝑃 𝑘 → 𝑃(𝑘 + 1) for A 
BUNCH of values of 𝑘. 

But the code is the same each time. 

And so was the argument!

We should instead show ∀𝑘[𝑃 𝑘 → 𝑃 𝑘 + 1 ].



Induction

Your new favorite proof technique!

How do we show ∀𝑛, 𝑃(𝑛)?

Show 𝑃(0)

Show ∀𝑘(𝑃 𝑘 → 𝑃 𝑘 + 1 )



Induction

Let 𝑃(𝑖) be “CalculatesTwoToTheI(i) returns 2𝑖 .”

Note that if the input 𝑖 is 0, then the if-statement evaluates to true, and 
1 = 2^0 is returned, so 𝑃(0) is true.

Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.

So 𝑃(𝑘 + 1) holds.

Therefore 𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.

//Assume i is a nonnegative integer

public int CalculatesTwoToTheI(int i){

if(i == 0)

return 1;

else

return 2*CaclulatesTwoToTheI(i-1);

}

Consider the code run on 𝑘 + 1. Since 𝑘 ≥ 0, 𝑘 + 1 > 0 and we are in the else 
branch. By inductive hypothesis, CalculatesTwoToTheI(𝑘) returns 2𝑘, so the 

code run on 𝑘 + 1 returns 2 ⋅ 2𝑘 = 2𝑘+1.



Making Induction Proofs Pretty

Let 𝑃(𝑖) be the predicate “CalculatesTwoToTheI(i) returns 2𝑖.” We 
prove 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑖 = 0) Note that if the input 𝑖 is 0, then the if-statement 
evaluates to true, and 1 = 2^0 is returned, so 𝑃(0) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.

Inductive Step: Since 𝑘 ≥ 0, 𝑘 + 1 ≥ 1, so the code goes to the recursive 
case. We will return 2 ⋅ CalculatesTwoToTheI(k). By Inductive 
Hypothesis, 

CalculatesTwoToTheI(k)= 2𝑘. Thus we return 2 ⋅ 2𝑘 = 2𝑘+1.

So 𝑃(𝑘 + 1) holds.

Therefore 𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!

1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.

2. Show 𝑃(0) i.e. show the base case

3. Suppose 𝑃(𝑘) for an arbitrary 𝑘. 

4. Show 𝑃 𝑘 + 1 (i.e. get 𝑃 𝑘 → 𝑃(𝑘 + 1))

5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 by induction. 



Some Other Notes

Always state where you use the inductive hypothesis when you’re using 
it in the inductive step.

It’s usually the key step, and the reader really needs to focus on it.

Be careful about what values you’re assuming the Inductive Hypothesis 
for – the smallest possible value of 𝑘 should assume the base case but 
nothing more. 



The Principle of Induction (formally)

Informally: if you knock over one domino, and every domino knocks 
over the next one, then all your dominoes fell over.

𝑃 0 ; ∀𝑘(𝑃 𝑘 → 𝑃 𝑘 + 1 )

∴ ∀𝑛(𝑃 𝑛 )

Principle of 

Induction



More induction!



More Induction
Induction doesn’t only work for code!

Show that σ𝑖=0
𝑛 2𝑖 = 1 + 2 + 4 +⋯+ 2𝑛 = 2𝑛+1 − 1.



More Induction
Induction doesn’t only work for code!

Show that σ𝑖=0
𝑛 2𝑖 = 1 + 2 + 4 +⋯+ 2𝑛 = 2𝑛+1 − 1.

Let 𝑃 𝑛 =“σ𝑖=0
𝑛 2𝑖 = 2𝑛+1 − 1.”

We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case ( )

Inductive Hypothesis:

Inductive Step: 

𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



More Induction
Induction doesn’t only work for code!

Show that σ𝑖=0
𝑛 2𝑖 = 1 + 2 + 4 +⋯+ 2𝑛 = 2𝑛+1 − 1.

Let 𝑃 𝑛 =“σ𝑖=0
𝑛 2𝑖 = 2𝑛+1 − 1.”

We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case (𝑛 = 0)σ𝑖=0
0 2𝑖 = 1 = 2 − 1 = 20+1 − 1.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.

Inductive Step: We show 𝑃(𝑘 + 1). Consider the summationσ𝑖=0
𝑘+12𝑖 =

2k+1 + σ𝑖=0
𝑘 2𝑖 = 2𝑘+1 + 2𝑘+1 − 1 , where the last step is by IH.

Simplifying, we get: σ𝑖=0
𝑘+1 2𝑖 = 2𝑘+1 + 2𝑘+1 − 1 = 2 ⋅ 2𝑘+1 − 1 =

2 𝑘+1 +1 − 1.

𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.


