Basis Step: 4 € S,5€ S

Warm up:
What is the following recursively-defined set?
Recursive Step: If x e Sandy e Sthenx —y €S

S:= { &3” 7

Structural Inducjcion
and Regular Expressions

CSE 311 Autumn 2023
Lecture 19

Strings

g is "the empty string”

The string with 0 characters —“” in Java (notnull!)

34 N

miveﬁTwEZ*andaEZthenwaﬂ
e f’d‘/@/
\

wa means the string of w with the character a appended.

You'll also see w - a (a - to mean “concatenate” i.e. + in Java)

Functions on Strings

Since strings are defined recursively, most functions on strings are as well.
Length:

len(g)=0;

len(wa)=len(w)+1forw € ¥*, a € X

Reversal:
R __

E =E,
(wa)X = awf forw € T*, a € X
Concatenation

x-e=xforallx ex*
x-(wa)=(x-w)aforw €X*a€X

Number of ¢'s in a string

#.(e)=0
#. chz#cw + 1 forw € Z7;
#.(wa) =#.(w) forw e x*,a e X\ {c}.

Structural Induction Template

1. Define P() Show that P(x) holds for all x € S. State your proof is by
structural induction.

2. Base Case: Show P(x)
[Do that for every base cases x in S.]

Let y be an arbitrary element of S not covered by the base cases. By the
exclusion rule, y =<recursive rules>

3. Inductive Hypothesis: Suppose P(x)
[Do that for every x listed as in S in the recursive rules.]

4. Inductive Step: Show P() holds for y.

[You will need a separate case/step for every recursive rule.]

5. Therefore P(x) holds for all x € S by the principle of induction.

Claim for all x,y € £* len(x-y)=len(x) + len(y).
—_— — —_—

Let P(y) be "for all x € £* len(x-y)=len(x) + len(y). “

NP

Notice the strangeness of this P() there is a “for all x“ inside the
definition of P(y).

That means we'll have to introduce an arbitrary x as part of the base
case and the inductive step!

Claim for all x,y € £* len(x-y)=len(x) + len(y).

Define Let P(y) be "for all x € Z* len(x-y)=len(x) + len(y). “

We provmfor all y € ¥* by structural induction.
Base Case:

Inductive Hypothesis:

Inductive Step:

Y*:Basis: £ € X",
Recursive: If w € X and a € X then wa € X

Claim for all x,y € £* len(x-y)=len(x) + len(y).

Define Letgy) be “for all x € Z* len(x-y)=len(x) + len(y).“
- <
We prove P(y) for all y € £* by structural induction.‘f

Base Case: Let x be an arbitrary string, len(x - €)=len(x)
=len(x)+0=lenXJ+len(e) —_— =

Let y be an arbitrar string not covered by the base case. By the exclusion
rule, y = wa for a string w and character a. -

Inductive HypothesisZStuppose P(w) =
Inductive Step: Let x be anar string.

Te—

Therefore, len(xwa)=len(x) + len(wa)
I —~——— . — Y *:Basis: € € X7,
Recursive: If w € X* and a € X then wa € X~

o) < b prins)
tﬁQN\C/x\—L\)) [QQWQ o]

_J

= furG oD +} oy]
.

\\;QW(X>*W<W@ -
Q)+ forly |

Claim for all x,y € Z* len(x-y)=len(x) + len(y).

Define Let be "for all x € £* len(x-y)=len(x) + len(y)." Z : (
s We préve for all y € £* by structural induction. : f)'\
| =

Base Case: Let x be an arbitrary string, len(x - €)=len(x)

=len(x)+0=len(x)+len(e) \/v
Lh te an arbitrary string not covered by the base case. By the exclusion rule, y = wa for a string w and
C era. —

Inductive Hypothesis: Suppose P(w)
Inductive Step: Let x be an arbitrary string.
len(xy)=len(xwa) =len(xw)+1 (by definition of len)
=len(x) + len(w) + 1 (by IH)
=len(x) + len(wa) (by definition of len)
Therefore, len(xy)=len(x) + len(y), as required.

We conclude thhy} holds for all string y by the principle of induction. Unwrapping the definition of y, we get
VxVy € Z* len(xy)=len(x)+len(y), as required.
Y ":Basis: € € X7,

Recursive: If w € X and a € X then wa € X

More Structural Sets

Binary Trees are another common source of structural induction.

_——

! Basis: A single node is a rooted binary tree@

Recursive Step: If T; and T, are rooted binary trees with roots r; and ry,
then a tree rooted at a new node, with children ry, r, Is a binary tree.

m

Functions on Binary Trees

1ze(®)= ﬁ a %
\s&e(@) = size(Ty) + size(T,) + 1 /\

oy
height(®) = 0 Jle 716

heightL?) = T+max(height(T;),height(T,))
- _/"\/ -

o Ttest
led)

Structural Induction on Binary Trees

/—\/._‘_/_\
Let P(T) be "size(T) < 2height(M+1 _ 1« We show P(T) for all binary
trees T by stracturat induction. |

Base Case: Let T =@®. size(T)=1 and height(T) = 0, so size(T)=1< 2 —
1 = 20+1 1 = Zhelght(T)+1 1 —

Let T be an arbﬁrary_t&ednot covered by the base case. By the exclusion
rule, T = . for trees L, R.

Inductive Aesis: Suppose P(L) and P(R)

o TN ot
GM - L§Q&CD< g q)

Structural Induction on Binary Trees (cont.)
F——=NT N\

et P(T) be “Size(T) < 2height(M+1 _ 1« We show P(T) for all binary trees T by
stractaral mductlon _

L R

height(T)=1 + max{height(L), height(R)}

szeﬁl +size(L +S€§£§3{(oy \ \,\@',6[,\4(154\
L -
)U (%) i S
So P(T) holPand we have P(T) for all binary tree T by the principle of

induction.

Structural Induction on Binary Trees (cont.)

Let P(T) be “size(T) < 2Meight(M+1 _ 1« \We show P(T) for all binary trees T by structural
induction.

size T) T+size(L)+size(R) @ zhelght(L>+@2helght<R>+1 1 (by IH)
helght(L@+2helght(R)+1 —1 cancel 15)

< 2height(T) 4 pheight(T) _ 1 = pheight(T)+1 _ 1 (T taller than subtrees)
So P(T) holds, and we have P(T) for all birary treesT by the principle of induction.

PR

What does the inductive step look like?

Here's a recursively-defined set:

Basiss0 €T and5€T

Recursive: It x,y e Tthenx+y €T andx —y €T.

Let P(x) be "5|x"

What does the inductive step look like?

Well there's two recursive rules, so we have two things to show

Just the IS (you still need the other steps)

Let t be an arbitrary element of T not covered t’}y the base case. By the
exclusionrulet =x+yort=x—yforx,y€eT.

Inductive hypothesis: Suppose P(x) and P(y) hold.
Casel.t=x+y
By IH 5|x and 5|y so 5a = x and 5b = y for integers a, b.

Adding, we get x + y = 5a + 5b = 5(a + b). Since a, b are integers, sois a + b,
and P(x + y), i.e. Peé), holds.

Case2:t=x—y
By IH 5|x and 5|y so 5a = x and 5b = y for integers a, b.

Subtracting, we get x —y = 5a — 5b = 5(a — b). Since a, b are integers, sO is
a—b,andP(x —y), i.e., P(t), holds.

In all cases, we have P(t). By the principle of induction, P(x) holds forall x € T.

If you don't have a recursively-defined set

You won't do structural induction.
You can do weak or strong induction though.

For example, Let P(n) be “for all elements of § of “size” n <something>
1S true”

To prove “for all x € S of size n..." you need to start with “let x be an
arbitrary element of size k + 1 in your IS.

You CAN'T start with size k and “build up” to an arbitrary element of
size k + 1 it isn't arbitrary.

Induction: Hats!

You have n people in a line (n = 2). Each of them wears either a purple
hat or a . The person at the front of the line wears a purple hat.
The person at the back of the line wears a gold hat.

Show that for every arrangement of the line satisfying the rule above,
there is a person with a purple hat next to someone with a gold hat.

Yes, this is kinda obvious. | promise this is good induction practice.

Yes, you could argue this by contradiction. | promise this is good
induction practice.

Induction: Hats!

Define P(n) to be “in every line of n people with gold and purple hats, with a
purple hat at one end and a gold hat at the other, there is a person with a
purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.
Base Case:n = 2

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have P(n) for all n > 2

Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.
By the principle of induction, we have P(n) for all n > 2

Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Case 1. There is someone with a purple hat next to the person in the gold hat at one end. Then those
people are the required adjacent opposite hats.

Case 2.. There is a person with a gold hat next to the person in the gold hat at the end. Then the line
from the second person to the end is length k, has a gold hat at one end and a purple hat at the
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have P(k + 1).
By the principle of induction, we have P(n) for all n > 2

Part 3 of the course!

Course Outline

Symbolic Logic (training wheels)
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)

Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments

But now with objects you haven't used before.
A first taste of how we can argue rigorously about computers.

Next week: reqular expressions and context free grammars — understand these
‘simpler computers”

Soon: what these simple computers can do
Then: what simple computers can't do.

Last week: A problem our computers cannot solve.

