Warm up:
What is the following recursively-defined set?

BasisStepr4€35,5€ S
Recursive Step: If x e Sandy e Sthenx —y €S
\ ——

Structural Induction | .. uumee
and Regular Expressions | ="

Strings D01 0
RSN

g is "the empty string” € T O)f% D\N O\ RQ\Q

The string with 0 characters —“” in Java (notnull!)

p—

and a € X thenwa € X*
T ———

wa means the string of w with the character a appended.

You'll also see w - a (a - to mean “concatenate” i.e. + in Java)

Functions on Strings

Since strings are defined recursively, most functions on strings are as well.

Length:

len(e)=0;_
g—w<!en(wa):len(@v €EXf,a€X

Reversal: -

R .
et = ¢
(wa)X = awf forw € T*, a € X
Concatenation

x-e=xforallx ex*
x-(wa)=(x-w)aforw €X*a€X

Number of ¢'s in a string

#.(e)=0
#. wc%z#cw + 1 forw € Z7;
#.(wa) =#.(w) forw e x*,a e X\ {c}.

Structural Induction Template

1. Define P() Show that P(x) holds for all x € S. State your proof is by
structural induction.

2. Base Case: Show P(x)
[Do that for every base cases x in S.]

Let y be an arbitrary element of S not covered by the base cases. By the
exclusion rule, y =<recursive rules>

3. Inductive Hypothesis: Suppose P(x)
[Do that for every x listed as in S in the recursive rules.]

4. Inductive Step: Show P() holds for y.

[You will need a separate case/step for every recursive rule.]

5. Therefore P(x) holds for all x € S by the principle of induction.

CIa|m for all x,y € X* len(x: y)-Ie\n(EQ + len(y).

—

Let%be ‘for all x € £* len(x-y)=len(x) + len(y

Notice the stra P() there is a “for all x“ inside the

definition of P(y)
oy Tl) ™ M, M

That means we'll have to introduce an arbitrary x as part of the base
case and the inductive step!

V%\/(QL/ >

Claim for all x,y € £* len(x-y)=len(x) + len(y).

Define Let P(y) be "for all x € Z* len(x-y)=len(x) + len(y). “

We prove P(y) P(y) forall y € Z* by structural induction.

Base Case: Q%\< C)
Inductive Hyp;\?hg?f{s:> \Y/Of Lfl S(L’)C) }}1%(0

Inductive Step: Qz,\p(p<>

Y*:Basis: £ € X",
Recursive: If w € X and a € X then wa € X

Cl/amfor all x " len(x-y)=len(x) + len(y).
Z .
Define Let be “for X" len(x{y)=len(x) + len(y).“

We prove P(y) forall y € y structural induction.
Base Case: Let x be an arhitrary string, len(x - €)=len(x)
=len(x)+0=len(X)+len(e) ~I — 2

rule, y = wa foras mg w and character a.

Inductive Hypothesis: Sup /\P(B
Inductive Step: Let x be an arbitrary s ring.
Tl (X ij foor KB“%J >

_/’7;<

Y*:Basis: £ € X",
Recursive: If w € X and a € X then wa € X

Lety be an arbltrar%/ string not covered by the base case. By the exclu5|on
r)
\,\jé_

Therefore, len(xwa)=len(x) + len(wa)

Claim for all x,y € £* len(x-y)=len(x) + len(y).
Define Let P(y) be “for all x € Z* len(x-y)=len(x) + len(y).“ X\ \/\/4\

We prove P(y) for all y € £* by structural induction. < \
Base Case: Let x be an arbitrary string, len(x - €)=len(x 4 6\
=len(x)+0=len(x)+len(e) y J ()) X \’J

Let y be aﬁﬁWg not covered by the base case. By the exclusion rule, y = wa for a string w and
cha-ée&em::.s—Q,,

—— -

Inductive Hypothesis: Suppose P(w)
Inductive Step: Let x be an arbitrary string.

len(xy)=len(xwa) =len(xw)+1 (by definition of len)
—~———m. ~

=len(x) + len(w) + 1 (by IH)
=len(x) + len(wa) (by definition of len)

o

Therefore, len(xy)=len(x) + len(y), as required.

We conclude th‘af‘?(?) holds ftor all string y by the principle of induction. Unwrapping the definition of y, we get
VxVy € ¥ len(xy)=len(x)+len(y), as required.

~ - Y*:Basis: € € X",
Recursive: If w € X and a € X then wa € X

More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree. @

Recursive Step: If T; and T, are rooted binary trees with roots r; and 1y,
then,a rooted at a new node, with children ry, 1, is a binary tree.

Functions on Binary Trees

size(®)=1 \“/:_LV\ &j{g

) = size(Ty) + size(TZ):r_B

_—

height(®) = 0 d\\#‘F
height) = T+max(height(T;),height(T5,)) \//E@@t?b

B)@b\/es

Structural Induction on Binary Trees

g “size(T) S'me show P(T) for all binary
trees T Dy S Sinductioh——

Base Case: Let T =@. size(T)=1 and height(T) = 0, so size(T)=1< 2 —
1 = 20+1 _ 1 = Zheight(T)+1 1

—_— |
Let T be an arbitrary tree not covered by the base case. By the exclusion

rule, T = . for trees L, R.
5D

Inductive Hypothesis: Suppose P(L) and P(R).

—_—

_—

§'ZLC%5':§92{CLB<<32£QE251L¥Hﬁ3\
L o)A\ T RegeRo

—_—

'Lyg&{il \\§%®+\

aa——]
.f—\
—

N ey
< AT n o
T T Lo ke)4

S

——

Structural Induction on Binary Trees (cont.)

et P(T) be “size(T) < 2Metght(M+1 _ 1« We show P(T) for all binary trees T by
structural induction.

T="\.

L\ R\
height(T)=1 + max{height(L), height(R)}
size(T)= 1 +size(L)+size(R)

So P(T) holds, and we have P(T) for all binary trees T by the principle of
induction.

Structural Induction on Binary Trees (cont.)

Ledt P(T) be “size(T) < 2Metght(M+1 _ 1 We show P(T) for all binary trees T by structural
Inauction.

®
T = .
A
height(T)=1 + max{height(L), height(R)}
size(T)= 1 +size(L)+size(R)
size(T)=1+size(L)+size(R) < 1 + 2hetght(L)+1 _ 1 4 pheight(R)+1 _1 (by [H)
< 2height(L)+1 _|_2height(R)+1 —1 (cancel 115)

< 2height(T) 4 pheight(T) _ 1 = pheight(T)+1 _ 1 (T taller than subtrees)

So P(T) holds, and we have P(T) for all binary trees T by the principle of induction.

What does the inductive step look like?

Here's a recursively-defined set:

Basiss0 €T and5€T

Recursive: It x,y e Tthenx+y €T andx —y €T.

Let P(x) be "5|x"

What does the inductive step look like?

Well there's two recursive rules, so we have two things to show

Just the IS (you still need the other steps)

Let t be an arbitrary element of T not covered t’}y the base case. By the
exclusionrulet =x+yort=x—yforx,y€eT.

Inductive hypothesis: Suppose P(x) and P(y) hold.
Casel.t=x+y
By IH 5|x and 5|y so 5a = x and 5b = y for integers a, b.

Adding, we get x + y = 5a + 5b = 5(a + b). Since a, b are integers, sois a + b,
and P(x + y), i.e. Peé), holds.

Case2:t=x—y
By IH 5|x and 5|y so 5a = x and 5b = y for integers a, b.

Subtracting, we get x —y = 5a — 5b = 5(a — b). Since a, b are integers, sO is
a—b,andP(x —y), i.e., P(t), holds.

In all cases, we have P(t). By the principle of induction, P(x) holds forall x € T.

If you don't have a recursively-defined set

You won't do structural induction.
You can do weak or strong induction though.

For example, Let P(n) be “for all elements of § of “size” n <something>
1S true”

To prove “for all x € S of size n..." you need to start with “let x be an
arbitrary element of size k + 1 in your IS.

You CAN'T start with size k and “build up” to an arbitrary element of
size k + 1 it isn't arbitrary.

Induction: Hats!

You have n people in a line (n = 2). Each of them wears either a purple
hat or a . The person at the front of the line wears a purple hat.
The person at the back of the line wears a gold hat.

Show that for every arrangement of the line satisfying the rule above,
there is a person with a purple hat next to someone with a gold hat.

Yes, this is kinda obvious. | promise this is good induction practice.

Yes, you could argue this by contradiction. | promise this is good
induction practice.

Induction: Hats!

Define P(n) to be “in every line of n people with gold and purple hats, with a
purple hat at one end and a gold hat at the other, there is a person with a
purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.
Base Case:n = 2

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have P(n) for all n > 2

Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.
By the principle of induction, we have P(n) for all n > 2

Induction: Hats!

Define P?n) to be "in every line of n people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider an arbitrary line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Case 1. There is someone with a purple hat next to the person in the gold hat at one end. Then those
people are the required adjacent opposite hats.

Case 2.. There is a person with a gold hat next to the person in the gold hat at the end. Then the line
from the second person to the end is length k, has a gold hat at one end and a purple hat at the
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have P(k + 1).
By the principle of induction, we have P(n) for all n > 2

Part 3 of the course!

Course Outline

Symbolic Logic (training wheels)
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)

Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments

But now with objects you haven't used before.
A first taste of how we can argue rigorously about computers.

Next week: reqular expressions and context free grammars — understand these
‘simpler computers”

Soon: what these simple computers can do
Then: what simple computers can't do.

Last week: A problem our computers cannot solve.

