
CSE 311 Section 3

Quantifiers and Proofs

Administrivia & Introductions

Announcements & Reminders

● HW1

○ If you think something was graded incorrectly, submit a regrade request!

● HW2 is due TOMORROW 10/13 @ 10PM on Gradescope

○ Use late days if you need them!

● HW3

○ Due Friday 10/20 @ 10pm

References

● Helpful reference sheets can be found on the course website!
● https://courses.cs.washington.edu/courses/cse311/23au/resources/

● How to LaTeX (found on Assignments page of website):
● https://courses.cs.washington.edu/courses/cse311/23au/assignments/HowToLaTeX.pdf

● Equivalence Reference Sheet
● https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-logical_equiv.pdf

● https://courses.cs.washington.edu/courses/cse311/23au/resources/logicalConnectPoster.pdf

● Boolean Algebra Reference Sheet
● https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-boolean-

alg.pdf

● Plus more!

https://courses.cs.washington.edu/courses/cse311/23au/resources/
https://courses.cs.washington.edu/courses/cse311/23au/assignments/HowToLaTeX.pdf
https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-logical_equiv.pdf
https://courses.cs.washington.edu/courses/cse311/23au/resources/logicalConnectPoster.pdf
https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-boolean-alg.pdf
https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-boolean-alg.pdf

Predicates & Quantifiers

Predicates & Quantifiers Review
● Predicate: a function that outputs true or false

○ Cat(𝑥) := “𝑥 is a cat”

○ LessThan(𝑥, 𝑦) := “𝑥 < 𝑦”

● Domain of Discourse: the types of inputs allowed in predicates
○ Numbers, mammals, cats and dogs, people in this class, etc.

● Quantifiers
○ Universal Quantifier ∀𝑥: for all 𝑥, for every 𝑥

○ Existential Quantifier ∃𝑥: there is an 𝑥, there exists an 𝑥, for some 𝑥

● Domain Restriction
○ Universal Quantifier ∀x: add the restriction as the hypothesis to an implication

○ Existential Quantifier ∃𝑥: AND in the restriction

Problem 1 – Domain Restriction
Translate each of the following sentences into logical notation. These translations require some of
our quantifier tricks. You may use the operators + and · which take two numbers as input and
evaluate to their sum or product, respectively.

a) Domain: Positive integers; Predicates: Even, Prime, Equal

“There is only one positive integer that is prime and even.”

b) Domain: Real numbers; Predicates: Even, Prime, Equal

“There are two different prime numbers that sum to an even number.”

c) Domain: Real numbers; Predicates: Even, Prime, Equal

“The product of two distinct prime numbers is not prime.”

d) Domain: Real numbers; Predicates: Even, Prime, Equal, Positive, Greater, Integer

“For every positive integer, there is a greater even integer”

Work on parts (a) and (b) with the people around you, and then we’ll go over it together!

Problem 1 – Domain Restriction

a) Domain: Positive integers; Predicates: Even, Prime, Equal

“There is only one positive integer that is prime and even.”

Problem 1 – Domain Restriction

a) Domain: Positive integers; Predicates: Even, Prime, Equal

“There is only one positive integer that is prime and even.”

We can start out with:

∃𝑥(Prime(𝑥) ∧ Even(𝑥))

Problem 1 – Domain Restriction

a) Domain: Positive integers; Predicates: Even, Prime, Equal

“There is only one positive integer that is prime and even.”

We can start out with:

∃𝑥(Prime(𝑥) ∧ Even(𝑥))

But now we need to add in the restriction that this x is the ONLY positive integer that is
prime and even. This is a technique you’ll use whenever you need to have only one of
something:

∃𝑥(Prime(𝑥) ∧ Even(𝑥) ∧ ∀𝑦[¬Equal(𝑥, 𝑦) → ¬(Even(𝑦) ∧ Prime(𝑦))])

Or, we could use the contrapositive:

∃𝑥(Prime(𝑥) ∧ Even(𝑥) ∧ ∀𝑦[(Even(𝑦) ∧ Prime(𝑦) → Equal(𝑥, 𝑦)])

Problem 1 – Domain Restriction

b) Domain: Real numbers; Predicates: Even, Prime, Equal

“There are two different prime numbers that sum to an even number.”

Problem 1 – Domain Restriction

b) Domain: Real numbers; Predicates: Even, Prime, Equal

“There are two different prime numbers that sum to an even number.”

Seems like maybe we should be able to say something like:

∃𝑥∃𝑦(Prime(𝑥) ∧ Prime(𝑦) ∧ Even(𝑥 + 𝑦))

Problem 1 – Domain Restriction

b) Domain: Real numbers; Predicates: Even, Prime, Equal

“There are two different prime numbers that sum to an even number.”

Seems like maybe we should be able to say something like:

∃𝑥∃𝑦(Prime(𝑥) ∧ Prime(𝑦) ∧ Even(𝑥 + 𝑦))

But this leaves open the possibility of x and y being equal (so they won’t be two DIFFERENT
numbers). So, we need to explicitly add in that x and y are not equal:

∃𝑥∃𝑦(Prime(𝑥) ∧ Prime(𝑦) ∧ Even(𝑥 + 𝑦) ∧ ¬Equal(𝑥, 𝑦))

Problem 2 – ctrl-z
Translate these logical expressions to English. For each of the translations, assume that
domain restriction is being used and take that into account in your English versions.

Let your domain be all UW Students. Predicates 143Student(𝑥) and 311Student(𝑥)
mean the student is in CSE 143 and 311, respectively. BioMajor(𝑥) means 𝑥 is a bio
major, DidHomeworkOne(𝑥) means the student did homework 1 (of 311). Finally,
KnowsJava(𝑥) and KnowsDeMorgan(𝑥) mean 𝑥 knows Java and knows DeMorgan’s
Laws, respectively.

a) ∀𝑥 143Student 𝑥 → KnowsJava 𝑥

b) ∃𝑥 143Student 𝑥 ∧ BioMajor 𝑥

c) ∀𝑥([311Student(𝑥) ∧ DidHomeworkOne(𝑥)] → KnowsDeMorgan(𝑥))

Work on parts (a) and (c) with the people around you, and then we’ll go over it together!

Problem 2 – ctrl-z

a) ∀𝑥(143Student(𝑥) → KnowsJava(𝑥))

Problem 2 – ctrl-z

a) ∀𝑥(143Student(𝑥) → KnowsJava(𝑥))

Every 143 student knows java.

“If a UW student is a 143 student, then they know java” is a valid translation of the original
sentence, but it is not taking advantage of the domain restriction.

Problem 2 – ctrl-z

c) ∀𝑥([311Student(𝑥) ∧ DidHomeworkOne(𝑥)] → KnowsDeMorgan(𝑥))

Problem 2 – ctrl-z

c) ∀𝑥([311Student(𝑥) ∧ DidHomeworkOne(𝑥)] → KnowsDeMorgan(𝑥))

All 311 students who do Homework 1 know DeMorgan’s Laws.

“If a UW student is a 311 student and they did Homework 1, then they know DeMorgan’s
Laws” is a valid translation of the original sentence, but it is not taking advantage of the
domain restriction.

Problem 3 – Quantifier Switch

Consider the following pairs of sentences. For each pair, determine if one implies the
other, if they are equivalent, or neither.

a) ∀𝑥 ∀𝑦 𝑃(𝑥, 𝑦) ∀𝑦 ∀𝑥 𝑃 𝑥, 𝑦

b) ∃𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∃𝑦 ∃𝑥 𝑃 𝑥, 𝑦

c) ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∀𝑦 ∃𝑥 𝑃 𝑥, 𝑦

d) ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∃𝑥 ∀𝑦 𝑃 𝑥, 𝑦

e) ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∃𝑦 ∀𝑥 𝑃(𝑥, 𝑦)

Work on parts (d) and (e) with the people around you, and then we’ll go over it together!

Problem 3 – Quantifier Switch

d) ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∃𝑥 ∀𝑦 𝑃 𝑥, 𝑦

Problem 3 – Quantifier Switch

d) ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∃𝑥 ∀𝑦 𝑃 𝑥, 𝑦

Different

For all 𝑥, there is a 𝑦 vs. there exists an 𝑥 that, for all 𝑦

Everyone likes someone vs. someone likes everyone

Problem 3 – Quantifier Switch

e) ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∃𝑦 ∀𝑥 𝑃(𝑥, 𝑦)

Problem 3 – Quantifier Switch

e) ∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ∃𝑦 ∀𝑥 𝑃(𝑥, 𝑦)

The second implies the first

For all x, there is a y, vs. there exists a y that, for all x

The second is stronger since a specific y must work for all x whereas the for the first, the y
value does not have to be the same for every x

Everyone likes someone
vs.
There is someone who is liked by everyone

Values that work for
the first

Values for
second

Direct Proofs

Direct Proofs

● Very common form of proof, sometimes written as a symbolic proof and

sometimes written as an English proof

● Use direct proofs to prove implications

● Steps to prove 𝑝 → 𝑞

○ Assume 𝑝 is true

○ Write down all the facts we know (including 𝑝)

○ Combine the things we know to derive new facts

○ Continue until we directly show 𝑞 is true

Writing a Proof (symbolically or in English)

● Don’t just jump right in!

● Look at the claim, and make sure you know:

○ What every word in the claim means

○ What the claim as a whole means

● Translate the claim in predicate logic.

● Next, write down the Proof Skeleton:

○ Where to start

○ What your target is

● Then once you know what claim you are proving and your starting point and

ending point, you can finally write the proof!

Helpful Tips for English Proofs

● Start by introducing your assumptions

● Introduce variables with “let”

● “Let 𝑥 be an arbitrary prime number…”

● Introduce assumptions with “suppose”

● “Suppose that 𝑦 ∈ 𝐴 ∧ 𝑦 ∉ 𝐵…”

● When you supply a value for an existence proof, use “Consider”

● “Consider 𝑥 = 2…”

● ALWAYS state what type your variable is (integer, set, etc.)

● Universal Quantifier means variable must be arbitrary

● Existential Quantifier means variable can be specific

Problem 6 – Direct Proof

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

b) Prove that the claim holds.

Problem 6 – Direct Proof

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

Work on part (a) of this problem with the people around you, and then we’ll go over it together!

Problem 6 – Direct Proof

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

Problem 6 – Direct Proof

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 6 – Direct Proof

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

b) Prove that the claim holds.

Lets walk through part (b) together!

Problem 6 – Direct Proof

b) Prove that the claim holds.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)
Claim:

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 6 – Direct Proof

b) Prove that the claim holds.

Let 𝑛 and 𝑚 be arbitrary integers.

…

Since 𝑛 and 𝑚 were arbitrary, the sum of any even and odd integer is odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)
Claim:

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 6 – Direct Proof

b) Prove that the claim holds.

Let 𝑛 and 𝑚 be arbitrary integers. Suppose 𝑛 is even and 𝑚 is odd.

…

Thus by (some reasoning here), 𝑛 + 𝑚 is odd. Since 𝑛 and 𝑚 were arbitrary, the sum of any
even and odd integer is odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)
Claim:

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 6 – Direct Proof

b) Prove that the claim holds.

Let 𝑛 and 𝑚 be arbitrary integers. Suppose 𝑛 is even and 𝑚 is odd. Then by definition of
even, 𝑛 = 2𝑘 for some integer 𝑘. By definition of odd, 𝑚 = 2𝑗 + 1 for some integer 𝑗.

…

Then 𝑛 + 𝑚 is 2 times an integer plus 1. Thus by definition of odd, 𝑛 + 𝑚 is odd.
Since 𝑛 and 𝑚 were arbitrary, the sum of any even and odd integer is odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)
Claim:

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 6 – Direct Proof

b) Prove that the claim holds.

Let 𝑛 and 𝑚 be arbitrary integers. Suppose 𝑛 is even and 𝑚 is odd. Then by definition of
even, 𝑛 = 2𝑘 for some integer 𝑘. By definition of odd, 𝑚 = 2𝑗 + 1 for some integer 𝑗.

Then consider 𝑛 + 𝑚:

𝑛 + 𝑚 = 2𝑘 + 2𝑗 + 1
…

Then 𝑛 + 𝑚 is 2 times an integer plus 1. Thus by definition of odd, 𝑛 + 𝑚 is odd.
Since 𝑛 and 𝑚 were arbitrary, the sum of any even and odd integer is odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)
Claim:

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 6 – Direct Proof

b) Prove that the claim holds.

Let 𝑛 and 𝑚 be arbitrary integers. Suppose 𝑛 is even and 𝑚 is odd. Then by definition of
even, 𝑛 = 2𝑘 for some integer 𝑘. By definition of odd, 𝑚 = 2𝑗 + 1 for some integer 𝑗.

Then consider 𝑛 + 𝑚:

𝑛 + 𝑚 = 2𝑘 + 2𝑗 + 1
 = 2(𝑘 + 𝑗) + 1
…

Then 𝑛 + 𝑚 is 2 times an integer plus 1. Thus by definition of odd, 𝑛 + 𝑚 is odd.
Since 𝑛 and 𝑚 were arbitrary, the sum of any even and odd integer is odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)
Claim:

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 6 – Direct Proof

b) Prove that the claim holds.

Let 𝑛 and 𝑚 be arbitrary integers. Suppose 𝑛 is even and 𝑚 is odd. Then by definition of
even, 𝑛 = 2𝑘 for some integer 𝑘. By definition of odd, 𝑚 = 2𝑗 + 1 for some integer 𝑗.

Then consider 𝑛 + 𝑚:

𝑛 + 𝑚 = 2𝑘 + 2𝑗 + 1
 = 2(𝑘 + 𝑗) + 1

Since 𝑘 and 𝑗 are integers, 𝑘 + 𝑗 is an integer.
Then 𝑛 + 𝑚 is 2 times an integer plus 1. Thus by definition of odd, 𝑛 + 𝑚 is odd.
Since 𝑛 and 𝑚 were arbitrary, the sum of any even and odd integer is odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)
Claim:

∀𝑛∀𝑚(Even 𝑛 ∧ Odd 𝑚 → Odd 𝑛 + 𝑚)

Problem 7 – Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

For all integers 𝑛, 𝑛 − 4 is even if and only if 𝑛 + 17 is odd.

b) Prove that the claim holds.

Problem 7 – Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

For all integers 𝑛, 𝑛 − 4 is even if and only if 𝑛 + 17 is odd.

Work on part (a) of this problem with the people around you, and then we’ll go over it together!

Problem 7 – Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

For all integers 𝑛, 𝑛 − 4 is even if and only if 𝑛 + 17 is odd.

∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

Problem 7 – Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1),

and Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘). Translate the following claim into predicate logic:

For all integers 𝑛, 𝑛 − 4 is even if and only if 𝑛 + 17 is odd.

b) Prove that the claim holds.

Lets walk through part (b) together!

Problem 7 – Proof of Biconditional
b) Prove that the claim holds.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)

Claim:
∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

Problem 7 – Proof of Biconditional
b) Prove that the claim holds.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)

Claim:
∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

We know that a biconditional 𝑝 ↔ 𝑞 can be equivalently expressed as two implications anded
together: 𝑝 → 𝑞 ∧ 𝑞 → 𝑝. So, in order to prove a biconditional, we need to prove both implications
hold.

For this problem, we need to prove both the forward direction:
∀𝑛(Even 𝑛 − 4 → Odd 𝑛 + 17)

And the backward direction:
∀𝑛(Odd 𝑛 + 17 → Even 𝑛 − 4)

By showing both implications hold, we prove that the biconditional holds.

Problem 7 – Proof of Biconditional
b) Prove that the claim holds.

⇒ Let 𝑛 be an arbitrary integer.

…

Since 𝑛 was arbitrary, we have shown that for all integers 𝑛 that if 𝑛 − 4 is even, then 𝑛 + 17 is
odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)

Claim:
∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

Problem 7 – Proof of Biconditional
b) Prove that the claim holds.

⇒ Let 𝑛 be an arbitrary integer. Suppose that 𝑛 − 4 is even. Then by definition of even, 𝑛 − 4 = 2𝑘
for some integer 𝑘. Then observe that:

 𝑛 − 4 = 2𝑘
 𝑛 + 17 = 2𝑘 + 21 Adding 21 to both sides
 𝑛 + 17 = 2(𝑘 + 10) + 1 Factoring

Thus 𝑛 + 17 = 2(𝑘 + 10) + 1.
Since 𝑘 is an integer, 𝑘 + 10 is an integer. So 𝑛 + 17 is 2 times an integer plus 1. Thus by definition
of odd, 𝑛 + 17 is odd.
Since 𝑛 was arbitrary, we have shown that for all integers 𝑛 that if 𝑛 − 4 is even, then 𝑛 + 17 is
odd.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)

Claim:
∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

Problem 7 – Proof of Biconditional
b) Prove that the claim holds.

⇐ Let 𝑛 be an arbitrary integer.

…

Since 𝑛 was arbitrary, we have shown that for all integers 𝑛, if 𝑛 + 17 is odd, then 𝑛 − 4 is even.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)

Claim:
∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

Problem 7 – Proof of Biconditional
b) Prove that the claim holds.

⇐ Let 𝑛 be an arbitrary integer. Suppose 𝑛 + 17 is odd. Then by definition of odd, 𝑛 + 17 = 2𝑘 +
1 for some integer 𝑘. Then observe that:

 𝑛 + 17 = 2𝑘 + 1
 𝑛 − 4 = 2𝑘 + 1 − 21 Subtracting 21 from both sides
 𝑛 − 4 = 2(𝑘 − 10) Factoring

Thus 𝑛 − 4 = 2(𝑘 − 10).
Since 𝑘 is an integer, 𝑘 − 10 is an integer. So 𝑛 − 4 is 2 times an integer.
So by definition of even, 𝑛 − 4 is even. Since 𝑛 was arbitrary, we have shown that for all integers 𝑛,
if 𝑛 + 17 is odd, then 𝑛 − 4 is even.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)

Claim:
∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

Problem 7 – Proof of Biconditional
b) Prove that the claim holds.

⇒ Let 𝑛 be an arbitrary integer. Suppose that 𝑛 − 4 is even. Then by definition of even, 𝑛 − 4 = 2𝑘 for some
integer 𝑘. Then observe that:
 𝑛 − 4 = 2𝑘
 𝑛 + 17 = 2𝑘 + 21 Adding 21 to both sides
 𝑛 + 17 = 2(𝑘 + 10) + 1 Factoring
Thus 𝑛 + 17 = 2(𝑘 + 10) + 1. Since 𝑘 is an integer, 𝑘 + 10 is an integer. So 𝑛 + 17 is 2 times an integer plus 1.
Thus by definition of odd, 𝑛 + 17 is odd. Since 𝑛 was arbitrary, we have shown that for all integers 𝑛 that if 𝑛 − 4
is even, then 𝑛 + 17 is odd.

⇐ Let 𝑛 be an arbitrary integer. Suppose 𝑛 + 17 is odd. Then by definition of odd, 𝑛 + 17 = 2𝑘 + 1 for some
integer 𝑘. Then observe that:
 𝑛 + 17 = 2𝑘 + 1
 𝑛 − 4 = 2𝑘 + 1 − 21 Subtracting 21 from both sides
 𝑛 − 4 = 2(𝑘 − 10) Factoring
Thus 𝑛 − 4 = 2(𝑘 − 10). Since 𝑘 is an integer, 𝑘 − 10 is an integer. So 𝑛 − 4 is 2 times an integer. So by
definition of even, 𝑛 − 4 is even. Since 𝑛 was arbitrary, we have shown that for all integers 𝑛, if 𝑛 + 17 is odd,
then 𝑛 − 4 is even.

Odd 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘 + 1)
Even 𝑥 ≔ ∃𝑘(𝑥 = 2𝑘)

Claim:
∀𝑛(Even 𝑛 − 4 ↔ Odd 𝑛 + 17)

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 311 Section 3

	Administrivia
	Slide 2: Administrivia & Introductions
	Slide 3: Announcements & Reminders
	Slide 4: References

	Predicates & Quantifiers
	Slide 5: Predicates & Quantifiers
	Slide 6: Predicates & Quantifiers Review

	1
	Slide 7: Problem 1 – Domain Restriction
	Slide 8: Problem 1 – Domain Restriction
	Slide 9: Problem 1 – Domain Restriction
	Slide 10: Problem 1 – Domain Restriction
	Slide 11: Problem 1 – Domain Restriction
	Slide 12: Problem 1 – Domain Restriction
	Slide 13: Problem 1 – Domain Restriction

	2
	Slide 14: Problem 2 – ctrl-z
	Slide 15: Problem 2 – ctrl-z
	Slide 16: Problem 2 – ctrl-z
	Slide 17: Problem 2 – ctrl-z
	Slide 18: Problem 2 – ctrl-z

	3
	Slide 19: Problem 3 – Quantifier Switch
	Slide 20: Problem 3 – Quantifier Switch
	Slide 21: Problem 3 – Quantifier Switch
	Slide 22: Problem 3 – Quantifier Switch
	Slide 23: Problem 3 – Quantifier Switch

	Direct Proofs
	Slide 24: Direct Proofs
	Slide 25: Direct Proofs
	Slide 26: Writing a Proof (symbolically or in English)
	Slide 27: Helpful Tips for English Proofs

	6
	Slide 28: Problem 6 – Direct Proof
	Slide 29: Problem 6 – Direct Proof
	Slide 30: Problem 6 – Direct Proof
	Slide 31: Problem 6 – Direct Proof
	Slide 32: Problem 6 – Direct Proof
	Slide 33: Problem 6 – Direct Proof
	Slide 34: Problem 6 – Direct Proof
	Slide 35: Problem 6 – Direct Proof
	Slide 36: Problem 6 – Direct Proof
	Slide 37: Problem 6 – Direct Proof
	Slide 38: Problem 6 – Direct Proof
	Slide 39: Problem 6 – Direct Proof

	7
	Slide 40: Problem 7 – Proof of Biconditional
	Slide 41: Problem 7 – Proof of Biconditional
	Slide 42: Problem 7 – Proof of Biconditional
	Slide 43: Problem 7 – Proof of Biconditional
	Slide 44: Problem 7 – Proof of Biconditional
	Slide 45: Problem 7 – Proof of Biconditional
	Slide 46: Problem 7 – Proof of Biconditional
	Slide 47: Problem 7 – Proof of Biconditional
	Slide 48: Problem 7 – Proof of Biconditional
	Slide 49: Problem 7 – Proof of Biconditional
	Slide 50: Problem 7 – Proof of Biconditional

	Outro
	Slide 51: That’s All, Folks!

