
CSE 311 Section 08

Induction, Regular Expressions, CFGs

Administrivia

Announcements & Reminders

● Midterm

○ Please don’t talk about the midterm!! Not everyone has taken it yet ☺

● HW5 Regrade Requests

○ Regrade request window open as usual

○ If something was regraded incorrectly, submit a regrade request

● HW6

○ Due Wednesday 11/22 @ 10pm (Wednesday before Thanksgiving)

○ Late due date Friday 11/24

● HW7

○ Will be released Wednesday 11/22 (Wednesday before Thanksgiving)

○ Due Friday 12/1 @ 10pm (Friday after Thanksgiving)

Recursively Defined Sets

Recursive Definition of Sets
Define a set 𝑆 as follows:

Basis Step:
Describe the basic starting elements in your set
ex: 0 ∈ 𝑆

Recursive Step:
Describe how to derive new elements of the set from previous elements
ex: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a
finite number of recursive steps starting from a basis step.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.
a) Binary strings of even length.

b) Binary strings not containing 10.

c) Binary strings not containing 10 as a substring and having at least as many 1s as
0s.

d) Binary strings containing at most two 0s and at most two 1s.

Work on this problem with the people around you.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Basis: 𝜀 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆, then 𝑥00, 𝑥01, 𝑥10, 𝑥11 ∈ 𝑆

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

If the string does not contain 10, then the first 1 in the string can only be followed
by more 1s. Hence, it must be of the form 0𝑚1𝑛 for some 𝑚, 𝑛 ∈ ℕ.

Basis: 𝜀 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆, then 0𝑥 ∈ 𝑆 and 𝑥1 ∈ 𝑆

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s as
0s.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s as
0s.

These must be of the form 0𝑚1𝑛 for some 𝑚, 𝑛 ∈ ℕ with 𝑚 ≤ 𝑛. We can ensure
that by pairing up the 0s with 1s as they are added:

Basis: 𝜀 ∈ 𝑆.

Recursive Step: If 𝑥 ∈ 𝑆, then 0𝑥1 ∈ 𝑆 and 𝑥1 ∈ 𝑆.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

d) Binary strings containing at most two 0s and at most two 1s.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the following
properties. Briefly justify that your solution is correct.

d) Binary strings containing at most two 0s and at most two 1s.

This is the set of all binary strings of length at most 4 except for these:

000, 1000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111

Since this is a finite set, we can define it recursively using only basis elements and
no recursive step.

Structural Induction

Idea of Structural Induction
Every element is built up recursively…

So to show 𝑃(𝑠) for all 𝑠 ∈ 𝑆…

Show 𝑃(𝑏) for all base case elements 𝑏.

Show for an arbitrary element not in the base case, if 𝑃() holds for every
named element in the recursive rule, then 𝑃() holds for the new element (each
recursive rule will be a case of this proof).

Structural Induction Template
Let 𝑃(𝑥) be. We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Case: Show 𝑃(𝑥)
[Do that for every base cases 𝑥 in 𝑆.]
Let 𝑦 be an arbitrary element of 𝑆 not covered by the base cases. By the exclusion rule,
𝑦 = <recursive rules>

Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

Therefore 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by the principle of induction.

Problem 4b – Structural Induction on Trees

Prove that leaves(T) ≥ size(T)/2 + 1/2 for all Trees T

Work on this problem with the people around you.

Definition of Tree:
Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then Tree(•, L, R) is a Tree

Definition of leaves():
leaves(•) = 1
leaves(Tree(•, L, R)) = leaves(L) + leaves(R)

Definition of size():
size(•) = 1
size(Tree(•, L, R)) =1 + size(L) + size(R)

Problem 4b – Structural Induction on Trees
Let 𝑃(x) be “” for all elements x ∈ 𝑆.
We show 𝑃(x) holds for all elements x ∈ 𝑆 by structural induction.
 Base Case: (x= <basis>):
Let y be an arbitrary element not covered by the base cases. By the exclusion rule,
y=<recursive rule> for <building blocks of y>.
Inductive Hypothesis: Suppose 𝑃(<building blocks of y>) holds for <building blocks>
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(x) holds for all elements x ∈ 𝑆 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (x = <basis>):
Let y be an arbitrary element not covered by the base cases. By the exclusion rule,
y=<recursive rule> for <building blocks of y>.
Inductive Hypothesis: Suppose 𝑃(<building blocks of y>) holds for <building blocks>
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let y be an arbitrary element not covered by the base cases. By the exclusion rule,
y=<recursive rule> for <building blocks of y>.
Inductive Hypothesis: Suppose 𝑃(<building blocks of y>) holds for <building blocks>
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(Tree(•, 𝐿, 𝑅)) holds: leaves(Tree(•,𝐿,𝑅)) ≥ size(Tree(•,𝐿,𝑅))/2 + 1/2

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(Tree(•, 𝐿, 𝑅)) holds: leaves(Tree(•,𝐿,𝑅)) ≥ size(Tree(•,𝐿,𝑅))/2 + 1/2

leaves(𝑇𝑟𝑒𝑒(•, 𝐿, 𝑅)) =
 ???
 = size(Tree(•, 𝐿, 𝑅))/2 + 1/2 ???

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(Tree(•, 𝐿, 𝑅)) holds: leaves(Tree(•,𝐿,𝑅)) ≥ size(Tree(•,𝐿,𝑅))/2 + 1/2

leaves(𝑇𝑟𝑒𝑒(•, 𝐿, 𝑅)) = leaves(𝐿) + leaves(𝑅) definition of leaves
 ???
 = size(Tree(•, 𝐿, 𝑅))/2 + 1/2 ???

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(Tree(•, 𝐿, 𝑅)) holds: leaves(Tree(•,𝐿,𝑅)) ≥ size(Tree(•,𝐿,𝑅))/2 + 1/2

leaves(𝑇𝑟𝑒𝑒(•, 𝐿, 𝑅)) = leaves(𝐿) + leaves(𝑅) definition of leaves
 ≥ (size(𝐿)/2 + 1/2) + (size(𝑅)/2 + 1/2) by IH
 ???
 = size(Tree(•, 𝐿, 𝑅))/2 + 1/2 ???

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(Tree(•, 𝐿, 𝑅)) holds: leaves(Tree(•,𝐿,𝑅)) ≥ size(Tree(•,𝐿,𝑅))/2 + 1/2

leaves(𝑇𝑟𝑒𝑒(•, 𝐿, 𝑅)) = leaves(𝐿) + leaves(𝑅) definition of leaves
 ≥ (size(𝐿)/2 + 1/2) + (size(𝑅)/2 + 1/2) by IH
 = (1/2 + size(𝐿)/2 + size(𝑅)/2) + 1/2
 ???
 = size(Tree(•, 𝐿, 𝑅))/2 + 1/2 ???

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(Tree(•, 𝐿, 𝑅)) holds: leaves(Tree(•,𝐿,𝑅)) ≥ size(Tree(•,𝐿,𝑅))/2 + 1/2

leaves(𝑇𝑟𝑒𝑒(•, 𝐿, 𝑅)) = leaves(𝐿) + leaves(𝑅) definition of leaves
 ≥ (size(𝐿)/2 + 1/2) + (size(𝑅)/2 + 1/2) by IH
 = (1/2 + size(𝐿)/2 + size(𝑅)/2) + 1/2
 = (1 + size(𝐿) + size(𝑅))/2 + 1/2
 = size(Tree(•, 𝐿, 𝑅))/2 + 1/2 ???

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4b – Structural Induction on Trees
Let 𝑃(𝑇) be “leaves(𝑇) ≥ size(𝑇)/2 + 1/2” for all trees 𝑇.
We show 𝑃(𝑇) holds for all trees 𝑇 by structural induction.
Base Case: (𝑇 =•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so 𝑃(•) holds.
Let 𝑌 be an arbitrary tree not covered by the base cases. By the exclusion rule,
𝑌 = Tree(•, 𝐿, 𝑅) for some trees 𝐿 and 𝑅.
Inductive Hypothesis: Suppose 𝑃(𝐿) and 𝑃(𝑅) hold for some arbitrary trees 𝐿 and 𝑅.
Inductive Step: Goal: Show 𝑃(Tree(•, 𝐿, 𝑅)) holds: leaves(Tree(•,𝐿,𝑅)) ≥ size(Tree(•,𝐿,𝑅))/2 + 1/2

leaves(𝑇𝑟𝑒𝑒(•, 𝐿, 𝑅)) = leaves(𝐿) + leaves(𝑅) definition of leaves
 ≥ (size(𝐿)/2 + 1/2) + (size(𝑅)/2 + 1/2) by IH
 = (1/2 + size(𝐿)/2 + size(𝑅)/2) + 1/2
 = (1 + size(𝐿) + size(𝑅))/2 + 1/2
 = size(Tree(•, 𝐿, 𝑅))/2 + 1/2 definition of size

Conclusion: Therefore 𝑃(𝑇) holds for all trees 𝑇 by the principle of induction.

Problem 4a – Structural Induction on Strings

Prove that for any string X, len(double(X)) = 2len(X).

Work on this problem with the people around you.

Definition of string:
Basis Step: "" is a string.
Recursive Step: If X is a string and c is a character then append(c, X) is a string.

Definition of len():
len("") = 0
len(append(c, X)) = 1 + len(X)

Definition of double():
double("") = ""
double(append(c, X)) = append(c, append(c, double(X)))

Problem 4a – Structural Induction on Strings
Let 𝑃(x) be “” for all elements x ∈ 𝑆.
We show 𝑃(x) holds for all elements x ∈ 𝑆 by structural induction.
 Base Case: (x= <basis>):
Let y be an arbitrary element not covered by the base cases. By the exclusion rule,
y=<recursive rule> for <building blocks of y>.
Inductive Hypothesis: Suppose 𝑃(<building blocks of y>) holds for <building blocks>
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(x) holds for all elements x ∈ 𝑆 by the principle of induction.

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (x= <basis>):
Let y be an arbitrary element not covered by the base cases. By the exclusion rule,
y=<recursive rule> for <building blocks of y>.
Inductive Hypothesis: Suppose 𝑃(<building blocks of y>) holds for <building blocks>
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let y be an arbitrary element not covered by the base cases. By the exclusion rule,
y=<recursive rule> for <building blocks of y>.
Inductive Hypothesis: Suppose 𝑃(<building blocks of y>) holds for <building blocks>
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(y) holds:

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append 𝑐, 𝑍)) = 2len(append 𝑐, 𝑍)

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:
len(double(append(𝑐, 𝑍))) =
 ???
 = 2(len(append(𝑐, 𝑍))) ???

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append 𝑐, 𝑍)) = 2len(append 𝑐, 𝑍)

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:
len(double(append(𝑐, 𝑍))) = len(append(𝑐, append(𝑐, double(𝑍)))) def. of double
 ???
 = 2(len(append(𝑐, 𝑍))) ???

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append 𝑐, 𝑍)) = 2len(append 𝑐, 𝑍)

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:
len(double(append(𝑐, 𝑍))) = len(append(𝑐, append(𝑐, double(𝑍)))) def. of double
 = 1 + len(append(𝑐, double(𝑍))) def. of len
 ???
 = 2(len(append(𝑐, 𝑍))) ???

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append) 𝑐, 𝑍) = 2len(append 𝑐, 𝑍)

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:
len(double(append(𝑐, 𝑍))) = len(append(𝑐, append(𝑐, double(𝑍)))) def. of double
 = 1 + len(append(𝑐, double(𝑍))) def. of len
 = 1 + 1 + len(double(𝑍)) def. of len
 ???
 = 2(len(append(𝑐, 𝑍))) ???

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append 𝑐, 𝑍)) = 2len(append 𝑐, 𝑍)

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:
len(double(append(𝑐, 𝑍))) = len(append(𝑐, append(𝑐, double(𝑍)))) def. of double
 = 1 + len(append(𝑐, double(𝑍))) def. of len
 = 1 + 1 + len(double(𝑍)) def. of len
 = 2 + 2len(𝑍) by I.H.
 ???
 = 2(len(append(𝑐, 𝑍))) ???

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append 𝑐, 𝑍)) = 2len(append 𝑐, 𝑍)

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:
len(double(append(𝑐, 𝑍))) = len(append(𝑐, append(𝑐, double(𝑍)))) def. of double
 = 1 + len(append(𝑐, double(𝑍))) def. of len
 = 1 + 1 + len(double(𝑍)) def. of len
 = 2 + 2len(𝑍) by I.H.
 = 2(1 + len(𝑍))
 = 2(len(append(𝑐, 𝑍))) ???

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append 𝑐, 𝑍)) = 2len(append 𝑐, 𝑍)

Problem 4a – Structural Induction on Strings
Let 𝑃(𝑋) be “len double 𝑋 = 2len(𝑋)” for all strings 𝑋.

We show 𝑃(𝑋) holds for all strings 𝑋 by structural induction.
Base Case: (𝑋 = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""),
so 𝑃("") holds
Let 𝑌 be an arbitrary string not covered by the base cases. By the exclusion rule,
𝑌 = append(𝑐, 𝑍) for some character 𝑐 and string 𝑍.
Inductive Hypothesis: Suppose 𝑃(𝑍) holds for some arbitrary string 𝑍.
Inductive Step: Goal: Show 𝑃(append(𝑐, 𝑍)) holds:
len(double(append(𝑐, 𝑍))) = len(append(𝑐, append(𝑐, double(𝑍)))) def. of double
 = 1 + len(append(𝑐, double(𝑍))) def. of len
 = 1 + 1 + len(double(𝑍)) def. of len
 = 2 + 2len(𝑍) by I.H.
 = 2(1 + len(𝑍))
 = 2(len(append(𝑐, 𝑍))) def. of len

Conclusion: Therefore 𝑃(𝑋) holds for all strings 𝑋 by the principle of induction.

len(double(append 𝑐, 𝑍)) = 2len(append 𝑐, 𝑍)

Regular Expressions

Regular Expressions
Basis:
• 𝜀 is a regular expression. The empty string itself matches the pattern (and

nothing else does).
• ∅ is a regular expression. No strings match this pattern.
• 𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character

itself matching this pattern.
Recursive:
• If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression. matched

by any string that matches 𝐴 or that matches 𝐵 [or both]).
• If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression. matched by

any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.
• If 𝐴 is a regular expression, then 𝐴∗ is a regular expression. matched by any

string that can be divided into 0 or more strings that match 𝐴.

Regular Expressions
A regular expression is a recursively defined set of strings that form a
language.

A regular expression will generate all strings in a language, and won’t generate
any strings that ARE NOT in the language

Hints:
• Come up with a few examples of strings that ARE and ARE NOT in your

language
• Then, after you write your regex, check to make sure that it CAN generate

all of your examples that are in the language, and it CAN’T generate those
that are not

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no

leading zeroes).

b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

c) Write a regular expression that matches all binary strings that contain the
substring “111”, but not the substring “000”.

d) Write a regular expression that matches all binary strings that do not have any
consecutive 0’s or 1’s.

e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where
𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

Work on this problem with the people around you.

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no

leading zeroes).

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no

leading zeroes).

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗ 0)

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

(01 ∪ 001 ∪ 1∗)∗ (0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗ (0 ∪ 00 ∪ ε)

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

((01)∗ (0 ∪ ε)) ∪ ((10)∗ (1 ∪ ε))

Problem 1 – Regular Expressions
e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where

𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

Problem 1 – Regular Expressions
e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where

𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

1(0 ∪ 1)∗ 1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s there
are, it turns out that we don’t. Convince yourself that strings in the language are
exactly those of the form 1x, where x is any binary string with at least one 1. Hence,
x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)∗

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 311 Section 08

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Recursively Defined Sets
	Slide 4: Recursively Defined Sets
	Slide 5: Recursive Definition of Sets

	3
	Slide 6: Problem 3 – Recursively Defined Sets
	Slide 7: Problem 3 – Recursively Defined Sets
	Slide 8: Problem 3 – Recursively Defined Sets
	Slide 9: Problem 3 – Recursively Defined Sets
	Slide 10: Problem 3 – Recursively Defined Sets
	Slide 11: Problem 3 – Recursively Defined Sets
	Slide 12: Problem 3 – Recursively Defined Sets
	Slide 13: Problem 3 – Recursively Defined Sets
	Slide 14: Problem 3 – Recursively Defined Sets

	Structural Induction
	Slide 15: Structural Induction
	Slide 16: Idea of Structural Induction
	Slide 17: Structural Induction Template

	4b
	Slide 18: Problem 4b – Structural Induction on Trees
	Slide 19: Problem 4b – Structural Induction on Trees
	Slide 20: Problem 4b – Structural Induction on Trees
	Slide 21: Problem 4b – Structural Induction on Trees
	Slide 22: Problem 4b – Structural Induction on Trees
	Slide 23: Problem 4b – Structural Induction on Trees
	Slide 24: Problem 4b – Structural Induction on Trees
	Slide 25: Problem 4b – Structural Induction on Trees
	Slide 26: Problem 4b – Structural Induction on Trees
	Slide 27: Problem 4b – Structural Induction on Trees
	Slide 28: Problem 4b – Structural Induction on Trees
	Slide 29: Problem 4b – Structural Induction on Trees

	4a
	Slide 30: Problem 4a – Structural Induction on Strings
	Slide 31: Problem 4a – Structural Induction on Strings
	Slide 32: Problem 4a – Structural Induction on Strings
	Slide 33: Problem 4a – Structural Induction on Strings
	Slide 34: Problem 4a – Structural Induction on Strings
	Slide 35: Problem 4a – Structural Induction on Strings
	Slide 36: Problem 4a – Structural Induction on Strings
	Slide 37: Problem 4a – Structural Induction on Strings
	Slide 38: Problem 4a – Structural Induction on Strings
	Slide 39: Problem 4a – Structural Induction on Strings
	Slide 40: Problem 4a – Structural Induction on Strings
	Slide 41: Problem 4a – Structural Induction on Strings
	Slide 42: Problem 4a – Structural Induction on Strings

	Regular Expressions
	Slide 43: Regular Expressions
	Slide 44: Regular Expressions
	Slide 45: Regular Expressions

	1
	Slide 46: Problem 1 – Regular Expressions
	Slide 47: Problem 1 – Regular Expressions
	Slide 48: Problem 1 – Regular Expressions
	Slide 49: Problem 1 – Regular Expressions
	Slide 50: Problem 1 – Regular Expressions
	Slide 51: Problem 1 – Regular Expressions
	Slide 52: Problem 1 – Regular Expressions
	Slide 53: Problem 1 – Regular Expressions
	Slide 54: Problem 1 – Regular Expressions
	Slide 55: Problem 1 – Regular Expressions
	Slide 56: Problem 1 – Regular Expressions

	Outro
	Slide 57: That’s All, Folks!

