
CSE 311 Section 10

Final Review

Administrivia

Announcements & Reminders

● HW7 Regrade Requests

○ Grades out soon

○ Submit a regrade request if something was graded incorrectly

● HW8

○ Due Tomorrow, Friday 12/8 @ 10pm

○ Late due date 12/11 @ 10pm

● Final Exam

○ Monday 12/11 @ 4:30pm-6:20 @ KNE 130

○ Fill out Form for Conflict Exam

Irregularity

A note for your final…

You WILL have a question on the final exam where you will have a
choice between either proving a language is irregular OR
proving a set is uncountable.

For section today, we will go over how to prove a language is
irregular. There is also a problem in the handout on proving a set
is uncountable you can review if you prefer to prepare for that
question. You should pick whichever you think is easier for you,
and make sure you are prepared to do it on the final exam!

Irregularity Template
Claim: L is an irregular language.

Proof: Suppose, for the sake of contradiction, that L is regular. Then there is a DFA 𝑀 such that 𝑀
accepts exactly L.

Let 𝑆 = [TODO] (𝑆 is an infinite set of strings)
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. [TODO] (We don’t get to choose 𝑥, 𝑦, but we can describe them based on
that set 𝑆 we just defined)

Consider the string 𝑧 = [TODO] (We do get to choose 𝑧 depending on 𝑥, 𝑦)

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO], so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO], so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

Irregularity Example from Lecture
Claim: {0𝑘1𝑘 : 𝑘 ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0𝑘1𝑘 : 𝑘 ≥ 0} is regular. Then there is a DFA 𝑀
such that 𝑀 accepts exactly L.

Let 𝑆 = {0𝑘 : 𝑘 ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for some integer
𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 1a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of an
accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

Problem 1 – Irregularity
a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Work on this problem with the people around you.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there is a DFA
𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there is a DFA
𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there is a DFA
𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b for some
integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there is a DFA
𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b for some
integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there is a DFA
𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b for some
integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎0𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1b0𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of an
accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then there is a
DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then there is a
DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. [TODO]

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then there is a
DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for some integer
𝑏 ≥ 0, with 𝑎 > 𝑏.

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then there is a
DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for some integer
𝑏 ≥ 0, with 𝑎 > 𝑏.

Consider the string 𝑧 = (12)a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then there is a
DFA 𝑀 such that 𝑀 accepts exactly L.

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same
state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for some integer
𝑏 ≥ 0, with 𝑎 > 𝑏.

Consider the string 𝑧 = (12)a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞
in 𝑀. Observe that 𝑥𝑧 = 0𝑎(12)a , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b(12)a , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of
an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Final Review

Problem 5 – Review: Translations
Translate the following sentences into logical notation if the English statement is given or to an English
statement if the logical statement is given, taking into account the domain restriction. Let the domain of
discourse be students and courses. Use predicates Student, Course, CseCourse to do the domain
restriction. You can use Taking(x, y) which is true if and only if x is taking y. You can also use
RobbieTeaches(x) if and only if Robbie teaches x and ContainsTheory(x) if and only if x contains theory.

(a) Every student is taking some course.

(b) There is a student that is not taking every cse course.

(c) Some student has taken only one cse course.

(d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

(e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)

Work on this problem with the people around you.

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Every course taught by Robbie contains theory.

Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking every cse course.

c) Some student has taken only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Every course taught by Robbie contains theory.

There is only one cse course that Robbie teaches and that course contains theory.

Problem 6 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of elements that f
sends C to. In other words, f(C) = {f(c) : c ∈ C}.

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Work on this problem with the people around you.

Problem 6 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of elements that f
sends C to. In other words, f(C) = {f(c) : c ∈ C}.

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Problem 6 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of elements that f
sends C to. In other words, f(C) = {f(c) : c ∈ C}.

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Let y ∈ f(A ∩ B) be arbitrary.

Then there exists some element x ∈ A ∩ B such that f(x) = y.
Then by the definition of intersection, x ∈ A and x ∈ B. Then f(x) ∈ f(A) and f(x) ∈ f(B).
Thus y ∈ f(A) and y ∈ f(B).

By definition of intersection, y ∈ f(A) ∩ f(B).

Since y was arbitrary, f(A ∩ B) ⊆ f(A) ∩ f(B).

Problem 7 – Review: Induction
a) A Husky Tree is a tree built by the following definition:

Basis: A single gold node is a Husky Tree.
Recursive Rules:
1. Let T1, T2 be two Husky Trees, both with root nodes colored gold. Make a new purple root
node and attach the roots of T1, T2 to the new node to make a new Husky Tree.
2. Let T1, T2 be two Husky Trees, both with root nodes colored purple. Make a new purple
root node and attach the roots of T1, T2 to the new node to make a new Husky Tree.
3. Let T1, T2 be two Husky Trees, one with a purple root, the other with a gold root. Make a
new gold root node, and attach the roots of T1, T2 to the new node to make a new Husky
Tree.

Use structural induction to show that for every Husky Tree: if it has a purple root, then it has
an even number of leaves and if it has a gold root, then it has an odd number of leaves.

Work on this problem with the people around you.
Work on this problem with the people around you.

Problem 7 – Review: Induction
Let 𝑃(𝑥) be. We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Case: Show 𝑃(𝑥)
[Do that for every base cases 𝑥 in 𝑆.]
Let 𝑦 be an arbitrary element of 𝑆 not covered by the base cases. By the exclusion rule, 𝑦 =
<recursive rules>

Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

Therefore 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by the principle of induction.

Problem 7 – Review: Induction
Let 𝑃(T) be “if T has a purple root, then it has an even number of leaves and if T has a gold root,
then it has an odd number of leaves”. We show 𝑃(T) holds for all Husky Trees T by structural
induction.

Base Case: Show 𝑃(•) Let • be a Husky Tree made from the basis step. By the definition of Husky
Tree, • must be a single gold node. That node is also a leaf node (since it has no children) so there
are an odd number (specifically, 1) of leaves, as required for a gold root node. So, 𝑃(•) holds.
Let 𝑌 be an arbitrary element of 𝑆 not covered by the base cases. By the exclusion rule, 𝑌 is a
Husky Tree made from two Husky Trees T1 and T2 with gold root nodes connected to a purple root
node, a Husky Tree made from two Husky Trees T1 and T2 with purple root nodes connected to a
purple root node, or a Husky Tree made from a Husky Tree T1 with a gold root node and a Husky
Tree T2 with a purple root node connected to a gold root node.

Inductive Hypothesis: Suppose 𝑃(T1) and 𝑃(T2) for arbitrary Husky Trees T1 and T2.

Problem 7 – Review: Induction
Inductive Step: Show 𝑃(𝑌) holds: We will have separate cases for each possible rule.
Rule 1: Suppose T1 and T2 both have gold roots. By the recursive rule, Y has a purple root. By inductive
hypothesis on T1, since T1’s root is gold, it has an odd number of leaves. Similarly by IH, T2 has an odd
number of leaves. Y’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in Y is the
sum of two odd numbers, which is even. Thus Y has an even number of leaves, as is required for a purple
root. Thus P(Y) holds.
Rule 2: Suppose T1 and T2 both have purple roots. By the recursive rule, Y has a purple root. By inductive
hypothesis on T1, since T1’s root is purple, it has an even number of leaves. Similarly by IH, T2 has an
even number of leaves. Y’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in Y is
the sum of two even numbers, which is even. Thus Y has an even number of leaves, as is required for a
purple root. Thus P(Y) holds.
Rule 3: Suppose T1 and T2 have opposite colored roots. Let T1 be the one with a gold root, and T2 the
one with the purple root. By the recursive rule, Y has a gold root. By inductive hypothesis on T1, since
T1’s root is gold, it has an odd number of leaves. Similarly, by IH, T2 has an even number of leaves since it
has a purple root. Y’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in Y is the
sum of an odd number and an even number, which is odd. Thus Y has an odd number of leaves, as is
required for a gold root. Thus P(T) holds.

Therefore 𝑃(T) holds for all Husky Trees T by the principle of induction.

Problem 7 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)

Work on this problem with the people around you.

Problem 7 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)

Let 𝑃(𝑛) be “”. We show 𝑃(𝑛) holds for (some) 𝑛 by induction on 𝑛.

Base Case: 𝑃(𝑏):

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for (some) 𝑛 by the principle of induction.

Problem 7 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)

Let 𝑃(𝑛) be “1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)”. We show 𝑃(𝑛) holds for all n ∈ ℤ+ by induction on

𝑛.

Base Case: 𝑃(𝑏):

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all n ∈ ℤ+ by the principle of induction.

Problem 7 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)

Let 𝑃(𝑛) be “1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)”. We show 𝑃(𝑛) holds for all n ∈ ℤ+ by induction on

𝑛.

Base Case: 𝑃(1): We have 1 = 1(1) = 1(2 − 1) which is P(1) so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all n ∈ ℤ+ by the principle of induction.

Problem 7 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)

Let 𝑃(𝑛) be “1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)”. We show 𝑃(𝑛) holds for all n ∈ ℤ+ by induction on

𝑛.

Base Case: 𝑃(1): We have 1 = 1(1) = 1(2 − 1) which is P(1) so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 1.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all n ∈ ℤ+ by the principle of induction.

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k − 1)

Problem 7 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)

Let 𝑃(𝑛) be “1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)”. We show 𝑃(𝑛) holds for all n ∈ ℤ+ by induction on

𝑛.

Base Case: 𝑃(1): We have 1 = 1(1) = 1(2 − 1) which is P(1) so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 1.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 1 + 5 + 9 + · · · + (4(k + 1) − 3) = (k + 1)(2(k + 1) − 1)

Conclusion: Therefore, 𝑃(𝑛) holds for all n ∈ ℤ+ by the principle of induction.

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k − 1)

Problem 7 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)

Let 𝑃(𝑛) be “1 + 5 + 9 + · · · + (4n − 3) = n(2n − 1)”. We show 𝑃(𝑛) holds for all n ∈ ℤ+ by induction on

𝑛.

Base Case: 𝑃(1): We have 1 = 1(1) = 1(2 − 1) which is P(1) so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 1.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 1 + 5 + 9 + · · · + (4(k + 1) − 3) = (k + 1)(2(k + 1) − 1)

We have:
1 + 5 + 9 + · · · + (4(k + 1) − 3) = 1 + 5 + 9 + · · · + (4k − 3) + (4(k + 1) − 3)

= k(2k − 1) + (4(k + 1) − 3) [Inductive Hypothesis]
= k(2k − 1) + (4k + 1) = 2k 2 + 3k + 1 = (k + 1)(2k + 1) [Factor]
= (k + 1)(2(k + 1) − 1)

This proves P(k + 1).

Conclusion: Therefore, 𝑃(𝑛) holds for all n ∈ ℤ+ by the principle of induction.

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k − 1)

Problem 8 – Review: Languages
(a) Construct a regular expression that represents binary strings where no occurrence

of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(c) Construct a DFA that recognizes the language of all binary strings which, when
interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in base-10, so should
be accepted while 111 is 7 in base-10, so should be rejected. The first bit processed
will be the most-significant bit.
Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 1? It’s a lot like a shift operation...

(d) Construct a DFA that recognizes the language of all binary strings with an even
number of 0’s and each 0 is (immediately) followed by at least one 1.

Work on this problem with the people around you.

Problem 8 – Review: Languages
(a) Construct a regular expression that represents binary strings where no occurrence

of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

Problem 8 – Review: Languages
(a) Construct a regular expression that represents binary strings where no occurrence

of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(0∗ (10)∗) ∗ 1 ∗

Problem 8 – Review: Languages
(a) Construct a regular expression that represents binary strings where no occurrence

of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(0∗ (10)∗) ∗ 1 ∗

S → 1S4 | T
T → 2T3 | ε

Problem 8 – Review: Languages
(c) Construct a DFA that recognizes the language of all binary strings which, when

interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in base-10, so should
be accepted while 111 is 7 in base-10, so should be rejected. The first bit processed
will be the most-significant bit.

Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 1? It’s a lot like a shift operation...

Problem 8 – Review: Languages
(c) Construct a DFA that recognizes the language of all binary strings which, when

interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in base-10, so should
be accepted while 111 is 7 in base-10, so should be rejected. The first bit processed
will be the most-significant bit.

Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 1? It’s a lot like a shift operation...

Problem 8 – Review: Languages
(d) Construct a DFA that recognizes the language of all binary strings with an even

number of 0’s and each 0 is (immediately) followed by at least one 1.

Problem 8 – Review: Languages
(d) Construct a DFA that recognizes the language of all binary strings with an even

number of 0’s and each 0 is (immediately) followed by at least one 1.

q0: even number of 0’s, with final 0
followed by at least one 1

q1: odd number of 0’s, with final 0 not yet
followed by at least one 1

q2: odd number of 0’s, with final 0
followed by at least one 1

q3: even number of 0’s, with final 0 not
yet followed by at least one 1

q4: garbage state where at least one 0 is
not followed by at least one 1

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 311 Section 10

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Regular Expressions
	Slide 4: Irregularity
	Slide 5: A note for your final…
	Slide 6: Irregularity Template
	Slide 7: Irregularity Example from Lecture

	1
	Slide 8: Problem 1 – Irregularity
	Slide 9: Problem 1 – Irregularity
	Slide 10: Problem 1 – Irregularity
	Slide 11: Problem 1 – Irregularity
	Slide 12: Problem 1 – Irregularity
	Slide 13: Problem 1 – Irregularity
	Slide 14: Problem 1 – Irregularity
	Slide 15: Problem 1 – Irregularity
	Slide 16: Problem 1 – Irregularity
	Slide 17: Problem 1 – Irregularity
	Slide 18: Problem 1 – Irregularity

	Final Review
	Slide 19: Final Review

	5
	Slide 20: Problem 5 – Review: Translations
	Slide 21: Problem 5 – Review: Translations
	Slide 22: Problem 5 – Review: Translations
	Slide 23: Problem 5 – Review: Translations
	Slide 24: Problem 5 – Review: Translations
	Slide 25: Problem 5 – Review: Translations
	Slide 26: Problem 5 – Review: Translations

	6
	Slide 27: Problem 6 – Review: Functions
	Slide 28: Problem 6 – Review: Functions
	Slide 29: Problem 6 – Review: Functions

	7
	Slide 30: Problem 7 – Review: Induction
	Slide 31: Problem 7 – Review: Induction
	Slide 32: Problem 7 – Review: Induction
	Slide 33: Problem 7 – Review: Induction
	Slide 34: Problem 7 – Review: Induction
	Slide 35: Problem 7 – Review: Induction
	Slide 36: Problem 7 – Review: Induction
	Slide 37: Problem 7 – Review: Induction
	Slide 38: Problem 7 – Review: Induction
	Slide 39: Problem 7 – Review: Induction
	Slide 40: Problem 7 – Review: Induction

	8
	Slide 41: Problem 8 – Review: Languages
	Slide 42: Problem 8 – Review: Languages
	Slide 43: Problem 8 – Review: Languages
	Slide 44: Problem 8 – Review: Languages
	Slide 45: Problem 8 – Review: Languages
	Slide 46: Problem 8 – Review: Languages
	Slide 47: Problem 8 – Review: Languages
	Slide 48: Problem 8 – Review: Languages

	Outro
	Slide 49: That’s All, Folks!

