Our First Proof

 $(a \land b) \lor (\neg a \land b) \lor (\neg a \land \neg b) \equiv (a \land b) \lor [(\neg a \land b) \lor (\neg a \land \neg b)]$ Stay on target: $\equiv (a \land b) \lor [\neg a \land (b \lor \neg b)]$ We met our intermediate goal. $\equiv (a \land b) \lor [\neg a \land T]$ Don't forget the final goal! $\equiv (a \land b) \lor [\neg a \land T]$ We want to end up at $(\neg a \lor b)$

If we apply the distribution rule, We'd get a $(\neg a \lor b)$

 $\equiv (\neg a \lor b)$

Properties of Logical Connectives

These identities hold for all propositions p, q, r

- Identity
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \wedge q \equiv q \wedge p$

- Associative
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
 - $p \vee \neg p \equiv T$
 - $p \land \neg p \equiv F$

- DeMorgan's Laws
 - $\neg (p \lor q) \equiv \neg p \land \neg q$
 - $\neg (p \land q) \equiv \neg p \lor \neg q$
- Double Negation
 - $\neg \neg p \equiv p$
- Law of Implication
 - $p \rightarrow q \equiv \neg p \lor q$
- Contrapositive
 - $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Converse, Contrapositive

Implication:

Contrapositive:

If it's raining, then I have my umbrella.

$$p \rightarrow q$$

 $\neg q \rightarrow \neg p$ If I don't have my umbrella, then it is not raining.

Converse:

If I have my umbrella, then it is raining.

$$q \rightarrow p$$

Inverse:

 $\neg
ho
ightarrow \neg q$ If it is not raining, then I don't have my umbrella.

How do these relate to each other?

p	q	$p \rightarrow q$	<i>q</i> → <i>p</i>	¬ p	¬q	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
Т	Т						
Т	F						
F	Т						
F	F						

Meet Boolean Algebra

Name	Variables	"True/False"	"And"	"Or"	"Not"	Implication
Java Code	boolean b	true, false	& &	П	!	No special symbol
Propositional Logic	"p, q, r"	T, F	٨	V	٦	\rightarrow
Circuits	Wires	1, 0	And	Dor	Hat	No special symbol
Boolean Algebra	a, b, c	1,0	("multiplication")	+ ("addition")	(apostrophe after variable)	No special symbol

Propositional logic

$$(p \land q \land r) \lor s \lor \neg t$$

Boolean Algebra

$$pqr + s + t'$$