CSE 312: Foundations of Computing II Quiz Section \#4: Expected value

1. Let the random variable X be the sum of two independent rolls of a fair die.
(a) What is the probability mass function of X ?
(b) From your answer to part (a), calculate $\mathrm{E}[X]$.
2. Let the random variable X be the number of heads in n independent flips of a fair coin.
(a) What is the probability mass function of X ?
(b) From your answer to part (a), calculate $\mathrm{E}[X]$.

Hint: prove and use the identity $i\binom{n}{i}=n\binom{n-1}{i-1}$.
3. This problem demonstrates that independence can be "broken" by conditioning. Let D_{1} and D_{2} be the outcomes of two independent rolls of a fair die. Let E be the event " $D_{1}=1$ ", F be the event " $D_{2}=6$ ", and G be the event " $D_{1}+D_{2}=7$ ". Even though E and F are independent, show that

$$
\mathrm{P}(E \cap F \mid G) \neq \mathrm{P}(E \mid G) \mathrm{P}(F \mid G)
$$

