CSE 321 Worksheet \#5

Thursday, November 30, 2003

1. Give a recursive algorithm form computing $n x$ whenever n is a positive integer and x is an integer.
2. Prove that the recursive algorithm that you found in (1) is correct.
3. Prove that
procedure power (a: nonzero real number, n: nonnegative integer)
if $n=0$ then $\operatorname{power}(a, n):=1$
else power (a, n) $:=a{ }^{*} \operatorname{power}(a, n-1)$
is correct.
4. Find an explicit fomula for $\mathrm{f}(\mathrm{n})$ if $f(1)=1$ and $f(n)=f(n-1)+2 n-$ 1 for $n \geq 2$. Prove your result using mathematical induction.
5. Use mathematical induction to prove this fomula for the sum of the terms of an arithmetic progression.

$$
a+(a+d)+\ldots(a+n d)=\frac{(n+1)(2 a+n d)}{2}
$$

6. Use mathematical inducation to show that when n circles divide the plane into regions, these regions can be colored with different colors such that no regions with a common boundary are colored the same.
