Discrete Structures

Graphs

Chapter 7, Sections 7.1 - 7.3

Dieter Fox

Undirected Graphs

- \diamondsuit A simple graph G=(V,E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.
- \diamondsuit A multigraph G=(V,E) consists of a set V of vertices, a set E of edges, and a function f from E to $\{\{u,v\} \mid u,v\in V,u\neq v\}$. The edges e_1 and e_2 are called multiple or parallel edges if $f(e_1)=f(e_2)$.
- \diamondsuit A **pseudograph** G=(V,E) consists of a set V of vertices, a set E of edges, and a function f from E to $\{\{u,v\}\mid u,v\in V\}$. An edge is a loop if $f(e)=\{u,u\}=\{u\}$ for some $u\in V$.

Directed Graphs

 \diamondsuit A directed graph G=(V,E) consists of a set V of vertices and a set of edges E that are ordered pairs of elements of V.

 \diamondsuit A directed multigraph G=(V,E) consists of a set V of vertices, a set E of edges, and a function f from E to $\{(u,v) \mid u,v \in V\}$. The edges e_1 and e_2 are multiple edges if $f(e_1)=f(e_2)$.

Graph Terminology

- \diamondsuit Two vertices u and v in an undirected graph G are called **adjacent** (or **neighbors**) in G if $\{u,v\}$ is an edge of G. If $e=\{u,v\}$, the edge e is called **incident with** the vertices u and v. The edge e is also said to **connect** u and v. The vertices u and v are called **endpoints** of the edges $\{u,v\}$.
- The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by deg(v).
- \diamondsuit The Handshaking Theorem : Let G=(V,E) be an undirected graph with e edges. Then

$$2e = \sum_{v \in V} \deg(v).$$

Theorem: An undirected graph has an even number of vertices of odd degree.