CSE 321: Discrete Structures
Assignment \#3
Due: Friday, October 21

Reading Assignment: Read Sections 1.6-1.8, pp. 233 - 236, 2.4-2.5

Problems: (8 points each)

1. Section 1.5, problem 22, part (a).
2. Section 1.5, problem 28
3. Section 1.5, problem 64
4. Which of the following statements are true?

- $\{x\} \subseteq\{x\}$
- $\{x\} \in\{x,\{x\}\}$
- $\{x\} \in\{x\}$
- $\{x,\{x\}\} \subseteq \mathcal{P}(\{x\})$

5. Carefully prove the following implications.

- $(A \cup B=B) \rightarrow(A \subseteq B)$
- $(A \cap B=A) \rightarrow(A \subseteq B)$

6. Give an example of a function from \mathcal{N} to \mathcal{N} which is

- one-to-one but not onto
- onto but not one-to-one
- both onto and one-to-one (but different from the identity function)
- neither one-to-one nor onto.

The next two problems use the following definition: Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by

$$
(f \circ g)(a)=f(g(a))
$$

7. Let $f: \mathcal{R} \rightarrow \mathcal{R}$, where $f(x)=x^{3}$ and $g: \mathcal{R} \rightarrow \mathcal{R}$, where $g(x)=x-3$. Give expressions for $f \circ f, f \circ g, g \circ f$ and $g \circ g$.
8. If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer.
