Discrete Structures

Relations

Chapter 7, Sections 7.1 - 7.5

Dieter Fox

Relations

- ♦ Let *A* and *B* be sets. A binary relation from *A* to *B* is a subset of $A \times B$. If $(a, b) \in R$, we write aRb and say *a* is related to *b* by *R*.
- \diamond A relation on the set *A* is a relation from *A* to *A*.
- \diamond A relation R on a set A is called **reflexive** if $(a, a) \epsilon R$ for every element $a \epsilon A$.
- \diamond A relation *R* on a set *A* is called **symmetric** if $(b, a)\epsilon R$ whenever $(a, b)\epsilon R$, for $a, b \epsilon A$.
- ♦ A relation *R* on a set *A* such that $(a, b) \epsilon R$ and $(b, a) \epsilon R$ only if a = b, for $a, b \epsilon A$, is called **antisymmetric**.
- \diamond A relation *R* on a set *A* is called **transitive** if whenever $(a, b)\epsilon R$ and $(b, c)\epsilon R$, then $(a, c)\epsilon R$, for $a, b \epsilon A$.

Combining Relations

- ♦ Let *R* be a relation from a set *A* to a set *B* and *S* be a relation from *B* to a set *C*. The **composite** of *R* and *S* is the relation consisting of ordered pairs (a, c), where $a \epsilon A, c \epsilon C$, and for which there exists an element $b \epsilon B$ such that $(a, b) \epsilon R$ and $(b, c) \epsilon S$. We denote the composite of *R* and *S* by $S \circ R$.
- ♦ Let *R* be a relation on the set *A*. The powers R^n , n = 1, 2, 3, ..., are defined inductively by $R^1 = R \quad \text{and} \quad R^{n+1} = R^n \circ R.$
- ♦ **Theorem** : The relation *R* on a set *A* is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Closures of Relations

 \diamond Let *P* be a property of relations (transitivity, refexivity, symmetry). A relation *S* is closure of *R* w.r.t. *P* if and only if *S* has property *P*, *S* contains *R*, and *S* is a subset of every relation with property *P* containing *R*.

- \diamond A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).
- ◇ A path from *a* to *b* in the directed graph *G* is a sequence of one or more edges (x₀, x₁), (x₁, x₂), ... (x_{n-1}, x_n) in *G*, where x₀ = a and x_n = b. This path is denoted by x₀, x₁, ..., x_n and has length *n*. A path that begins and ends at the same vertex is called a circuit or cycle.
- ♦ There is a path from *a* to *b* in a relation *R* is there is a sequence of elements $a, x_1, x_2, \ldots, x_{n-1}, b$ with $(a, x_1) \in R, (x_1, x_2) \in R, \ldots, (x_{n-1}, b) \in R$.
- ♦ Theorem: Let *R* be a relation on a set *A*. There is a path of length *n* from *a* to *b* if and only if $(a, b) \in R^n$.

Connectivity

- \diamond Let *R* be a relation on a set *A*. The connectivity relation R^* consists of pairs (a, b) such that there is a path between *a* and *b* in *R*.
- \diamond **Theorem:** The transitive closure of a relation *R* equals the connectivity relation R^* .

Partitions

- We want to use relations to form partitions of a group of students. Each member of a subgroup is related to all other members of the subgroup, but to none of the members of the other subgroups.
- \diamond Use the following relations:

Partition by the relation "older than"

Partition by the relation "partners on some project with"

Partition by the relation "comes from same hometown as"

 \diamond Which of the groups will succeed in forming a partition? Why?

Equivalence Relations

- \diamond A relation on a set A is called an **equivalence relation** if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation are called equivalent.
- ◇ Let *R* be an equivalence relation on a set *A*. The set of all elements that are related to an element *a* of *A* is called the equivalence class of *a*.
 [*a*]_{*R*}: equivalence class of *a* w.r.t. *R*.
 If *b* ∈ [*a*]_{*R*} then *b* is representative of this equivalence class.
- \diamond **Theorem:** Let *R* be an equivalence relation on a set *A*. The following statements are equivalent:
 - **(1)** *aRb*
 - **(2)** [a] = [b]
 - (3) $[a] \cap [b] \neq \emptyset$

Equivalence Relations and Partitions

 \diamond A partition of a set *S* is a collection of disjoint nonempty subsets $A_i, i \in I$ (where *I* is an index set) of *S* that have *S* as their union:

```
A_i \neq \emptyset \text{ for } i \in IA_i \cap A_j = \emptyset, \text{ when } i \neq j\bigcup_{i \in I} A_i = S
```

♦ Theorem: Let *R* be an equivalence relation on a set *S*. Then the equivalence classes of *R* form a partition of *S*. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set *S*, there is an equivalence relation *R* that has the sets $A_i, i \in I$, as its equivalence classes.