Discrete Structures

Relations
Chapter 7, Sections 7.1-7.5

Dieter Fox

Relations

\diamond Let A and B be sets. A binary relation from A to B is a subset of $A \times B$. If $(a, b) \epsilon R$, we write $a R b$ and say a is related to b by R.
\diamond A relation on the set A is a relation from A to A.
\diamond A relation R on a set A is called reflexive if $(a, a) \epsilon R$ for every element $a \epsilon A$.
\diamond A relation R on a set A is called symmetric if $(b, a) \epsilon R$ whenever $(a, b) \epsilon R$, for $a, b \in A$.
\diamond A relation R on a set A such that $(a, b) \epsilon R$ and $(b, a) \epsilon R$ only if $a=b$, for $a, b \in A$, is called antisymmetric .
\diamond A relation R on a set A is called transitive if whenever $(a, b) \epsilon R$ and $(b, c) \epsilon R$, then $(a, c) \epsilon R$, for $a, b \in A$.

Combining Relations

\diamond Let R be a relation from a set A to a set B and S be a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \epsilon A, c \epsilon C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \epsilon S$.
We denote the composite of R and S by $S \circ R$.
\diamond Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$, are defined inductively by
$R^{1}=R$
and

$$
R^{n+1}=R^{n} \circ R
$$

\diamond Theorem : The relation R on a set A is transitive if and only if $R^{n} \subseteq R$ for $n=1,2,3, \ldots$.

Closures of Relations

\diamond Let P be a property of relations (transitivity, refexivity, symmetry). A relation S is closure of R w.r.t. P if and only if S has property P, S contains R, and S is a subset of every relation with property P containing R.

Relations and Graphs

\diamond A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).
\diamond A path from a to b in the directed graph G is a sequence of one or more edges $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots\left(x_{n-1}, x_{n}\right)$ in G, where $x_{0}=a$ and $x_{n}=b$. This path is denoted by $x_{0}, x_{1}, \ldots, x_{n}$ and has length n. A path that begins and ends at the same vertex is called a circuit or cycle.
\diamond There is a path from a to b in a relation R is there is a sequence of elements $a, x_{1}, x_{2}, \ldots x_{n-1}, b$ with $\left(a, x_{1}\right) \in R,\left(x_{1}, x_{2}\right) \in R, \ldots,\left(x_{n-1}, b\right) \in R$.
\diamond Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^{n}$.

Connectivity

\diamond Let R be a relation on a set A. The connectivity relation R^{*} consists of pairs (a, b) such that there is a path between a and b in R.
\diamond Theorem: The transitive closure of a relation R equals the connectivity relation R^{*}.

Partitions

\diamond We want to use relations to form partitions of a group of students. Each member of a subgroup is related to all other members of the subgroup, but to none of the members of the other subgroups.
\diamond Use the following relations:
Partition by the relation "older than"
Partition by the relation "partners on some project with"
Partition by the relation "comes from same hometown as"
\diamond Which of the groups will succeed in forming a partition? Why?

Equivalence Relations

\diamond A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation are called equivalent.
\diamond Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. $[a]_{R}$: equivalence class of a w.r.t. R.
If $b \in[a]_{R}$ then b is representative of this equivalence class.
\diamond Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent:
(1) $a R b$
(2) $[a]=[b]$
(3) $[a] \cap[b] \neq \emptyset$

Equivalence Relations and Partitions

\diamond A partition of a set S is a collection of disjoint nonempty subsets $A_{i}, i \in I$ (where I is an index set) of S that have S as their union:

$$
\begin{aligned}
& A_{i} \neq \emptyset \text { for } i \in I \\
& A_{i} \cap A_{j}=\emptyset, \text { when } i \neq j \\
& \bigcup_{i \in I} A_{i}=S
\end{aligned}
$$

\diamond Theorem: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\left\{A_{i} \mid i \in I\right\}$ of the set S, there is an equivalence relation R that has the sets $A_{i}, i \in I$, as its equivalence classes.

