Discrete Structures

Logic

Chapter 1, Sections 1.1–1.4

Dieter Fox

Outline

- \diamond Propositional Logic
- \Diamond Propositional Equivalences
- \diamondsuit First-order Logic

Propositional Logic

Let p and q be propositions.

- \Diamond **Negation** $\neg p$ The statement "It is not the case that p." is true, whenever p is false and is false otherwise.
- \diamond **Conjunction** $p \land q$ The statement "p and q" is true when both p and q are true and is false otherwise.
- \diamondsuit **Disjunction** $p \lor q$ The statement "p or q" is false when both p and q are false and is true otherwise.
- \diamondsuit **Exclusive or** $p \oplus q$ The *exclusive or* of p and q is true when exactly one of p and q is true and is false otherwise.

Propositional Logic

Let p and q be propositions.

- \Diamond Implication $p \rightarrow q$ The *implication* $p \rightarrow q$ is false when p is true and q is false and is true otherwise. p is called the hypothesis (antecedent, premise) and q is called the conclusion (consequence).
 - "if p, then q" "p implies q" "p only if q" "p is sufficient for q" "q is necessary for p"
 - $q \to p$ is called the converse of $p \to q$
 - $\neg q \rightarrow \neg p$ is called the contrapositive of $p \rightarrow q$

Translating English Sentences

 \diamond You can access the Internet from campus only if you are a computer science major or you are not a freshman.

 \diamond You cannot ride the roller coaster is you are under 4 feet tall unless you are older than 16 years old.

Logical Equivalences

- ♦ **Tautology** A compound statement that is always true.
- \diamond **Contradiction** A compound statement that is always false.
- Contingency A compound statement that is neither a tautology nor a contradiction.
- $\diamondsuit \ \ \, \mbox{Logical equivalence } p \equiv q \ \ \, \mbox{Propositions } p \ \mbox{and } q \ \mbox{are called } logically \\ equivalent \ \mbox{if } p \leftrightarrow q \ \mbox{is a tautology.}$

 \diamond I don't jump off the Empire State Building implies if I jump off the Empire State Building then I float safely to the ground.

 $\diamondsuit ((\mathsf{Smoke} \land \mathsf{Heat}) \to \mathsf{Fire}) \equiv ((\mathsf{Smoke} \to Fire) \lor (\mathsf{Heat} \to \mathsf{Fire}))$

Logical Equivalences

$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \lor \mathbf{F} \equiv p$	
$p \lor \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \wedge \neg p \equiv \mathbf{F}$	

 \diamond Universal quantifier \forall : The *universal quantification* of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse."

♦ Existential quantifier ∃: The existential quantification of P(x) is the proposition "There exists an element x in the universe of discourse such that P(x) is true."