The truth table for implication is

| $p$ | $q$ | $p->q$ |
| :--- | :--- | :--- |
| $T$ | $T$ | $T$ |
| $T$ | $F$ | $F$ |
| $F$ | $T$ | $T$ |
| $F$ | $F$ | $T$ |

So the only way an implication is false is if the first part is true and the second part is false. So the way that I find works best for me to figure out which way the implication goes is to try to figure out which situation corresponds to this case; which truth assignment makes the statement as a whole false?
" $r$ is necessary for s"
This means it is necessary that $r$ be true in order for $s$ to be true. So if $r$ is true and $s$ is false, that's fine since the behavior of $s$ depends on $r$, not the other way around. If $r$ is false and $s$ is true, that is a violation, so the statement is false. This means the implication is s->r.
" a necessary condition for $r$ is $s$ "
This means it is necessary that $s$ be true in order for $r$ to be true (but it's OK if $s$ is true and $r$ is false!) So if $r$ is true and $s$ is false, that is a violation, so the statement is false. This means the implication is $r$->s.
"r only if s"
This means $r$ can be true only if $s$ is true. So if $r$ is true and $s$ is false, $r$ being true when $s$ is false is a violation, so the statement is false. This means that the implication is $r$->s.
" r is sufficient for s "

This means that $r$ being true is sufficient to make $s$ true. So if $r$ is false and $s$ is true, that's ok since our statement is making a promise about what happens when $r$ is true. If $r$ is true and $s$ is false, that is a violation since $r$ being true was supposed to be enough to ensure that $s$ was true. So the implication is $r$ $>s$.

