

Announcements

- Readings
- Friday:
- Applications of Number Theory
- 3.7 ($5^{\text {th }}$ Edition: 2.6)
- Next week
- Induction and recursion
- 4.1-4.2 (5 ${ }^{\text {th }}$ Edition: 3.3-3.4)
- Midterm:
- Friday, February 8

Highlights from Lecture 10

- Primality
- Discrete Log Problem
- Euclid's Theorem
- Infinitude of Primes
- Density of Primes
- Factorization vs. Primality Testing
- Probabilistic Primality Testing

Euclid's Algorithm

- $\operatorname{GCD}(\mathrm{x}, \mathrm{y})=\operatorname{GCD}(\mathrm{y}, \mathrm{x} \bmod \mathrm{y})$
int GCD(int a, int $b)\{\quad / * a>=b, \quad b>0 * /$
int tmp
int $x=a$;
int $y=b$;
while $(y>0)\{$
tmp $=x \%$;
$x=y ;$
$y=$ tmp;
\}
\}

Greatest Common Divisor

- GCD(a, b): Largest integer d such that d|a and d|b
- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$

Extended Euclid's Algorithm

- If $\operatorname{GCD}(x, y)=g$, there exist integers s, t, such $s x+t y=g$;
- The values x, y in Euclid's algorithm are linear sums of a, b.
- A little book keeping can be used to keep track of the constants

Chinese Remainder Theorem

Find an x in $[0 \ldots$ 11484] such that

```
x mod 29= 
x mod 29=7
x mod 36=14
```

Simple version:
Suppose: p, q prime
$x \equiv a(\bmod p)$
$x \equiv b(\bmod q)$
What is $x \bmod p q$?
p, q prime, $x \bmod p=a, x \bmod q=b$

- Choose s , t such that $\mathrm{sp}+\mathrm{tq}=1$
- Let $\mathrm{f}(\mathrm{a}, \mathrm{b})=(\mathrm{atq}+\mathrm{bsp}) \bmod \mathrm{pq}$
- $f(a, b) \bmod p=a ; f(a, b) \bmod q=b$
- f is 1 to 1 between [0..p-1]×[0..q-1] and [0..pq - 1]
- Corollary:
$-x \bmod p=a ; x \bmod q=a$, then $x \bmod p q=a$

Perfect encryption

- Alice and Bob have a shared n-bit secret S
- To send an n-bit message M, Alice sends $M \oplus S$ to Bob
- Bob receives the message N , to decode, Bob computes $\mathrm{N} \oplus \mathrm{S}$

RSA

- Rivest - Shamir - Adelman
- $\mathrm{n}=\mathrm{pq}$. p, q are large primes
- Choose e relatively prime to ($p-1$)($q-1$)
- Find d, k such that $d e+k(p-1)(q-1)=1$ by Euclid's Algorithm
- Publish e as the encryption key, d is kept private as the decryption key

Message protocol

- Bob
- Precompute p, q, n, e, d
- Publish e, n
- Alice
- Read e, n from Bob's public site
- To send message M, compute $C=M^{e} \bmod n$
- Send C to Bob
- Bob
- Compute C^{d} to decode message M

Decryption

- $d e=1+k(p-1)(q-1)$
- $C^{d} \equiv\left(M^{e}\right)^{d}=M^{d e}=M^{1+k(p-1)(q-1)}(\bmod n)$
- $C^{d} \equiv \mathrm{M}\left(\mathrm{M}^{\mathrm{p}-1}\right)^{\mathrm{k}(q-1)} \equiv \mathrm{M}(\bmod \mathrm{p})$
- $\mathrm{C}^{\mathrm{d}} \equiv \mathrm{M}\left(\mathrm{M}^{\mathrm{q}-1}\right)^{\mathrm{k}(\mathrm{p}-1)} \equiv \mathrm{M}(\bmod \mathrm{q})$
- Hence $C^{d} \equiv M(\bmod p q)$

