# Discrete Structures 

Functions
Chapter 2, Section 2.3
Dieter Fox

## Functions

$\diamond f: A \rightarrow B$ : A function from $A$ to $B$ is an assignment of exactly one element of $B$ to each element of $A$.
$\diamond A$ is the domain of $f$ and $B$ is the codomain of $f$.
$\diamond$ If $f(a)=b$, we say that $b$ is the image of $a$ and $a$ is a pre-image of $b$. The range of $f$ i the set of all images of elements of $A$.
$\diamond f$ maps from $A$ to $B$.
$\diamond f_{1}+f_{2}, f_{1} f_{2}$ : Let $f_{1}$ and $f_{2}$ be functions from $A$ to $R$. Then

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x), \\
& \left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)
\end{aligned}
$$

## Functions

$\diamond$ Injection: Function $f$ is said to be one-to-one, if and only if $f(x)=f(y)$ implies that $x=y$ for all $x$ and $y$ in the domain of $f$.
$\diamond$ Function $f$ whose domain and codomain are subsets of the set of real numbers is called strictly increasing if $f(x)<f(y)$ whenever $x<y$ and $x$ and $y$ are in the domain of $f$ (decreasing analogous).
$\diamond$ Surjection: Function $f$ is said to be onto / surjective, if and only if for every element $b \epsilon B$ there is an element $a \epsilon A$ with $f(a)=b$.
$\diamond$ Bijection: Function $f$ is a one-to-one correspondence, or bijection, if it is both one-to-one and onto.
$\diamond$ Inverse function: Let $f$ be a one-to-one correspondence from $A$ to $B$. The inverse function of $f$ assigns to an element $b$ in $B$ the unique element $a$ in $A$ such that $f(a)=b$. The inverse function of $f$ is denoted by $f^{-} 1$. Hence, $f^{-1}(b)=a$ when $f(a)=b$.

## Functions

$\diamond f \circ g: g: A \rightarrow B, f: B \rightarrow C$. The composition of the functions $f$ and $g$ is defined by $(f \circ g)(a)=f(g(a))$
$\diamond\lfloor x\rfloor$ The floor function assigns to the real number $x$ the largest integer that is less than or equal to $x$.
$\diamond\lceil x\rceil$ The ceiling function assigns to the real number $x$ the smallest integer that is greater than or equal to $x$.

