CSE 321: Discrete Structures
Assignment \#5
February 4, 2009
Due: Wednesday, February 11, in class

Reading Assignment: Sections 4.1 - 4.3 and 5.1.
Problems:

1. Which amounts of money can be formed using just dimes and quarters? Prove your answer using a form of mathematical induction.
2. Assume that a chocolate bar consists of $n$ squares arranged in a rectangular pattern. Any chocolate bar can be broken into two pieces along a horizontal or vertical line separating the squares (e.g. a $2 \times 4$ chocolate bar can be broken in 4 different ways: along the one horizontal line, or along one of the three vertical lines). Assuming that only one piece can be broken at a time, determine how many breaks you must successively make to break the bar into $n$ separate squares. Use strong induction to prove your answer.
3. Section 4.2, exercise 12.
4. Give a recursive definition of
(a) the set of odd positive integers,
(b) the set of positive integer powers of 3,
(c) the set of positive integers congruent to 4 modulo 5.
5. Let $f_{n}$ be the $n$-th Fibonacci number. Prove that $f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$ whenever $n$ is a positive integer.
6. Structural induction: Show that the set $S$ defined by $1 \in S$ and $s+t \in S$ whenever $s \in S$ and $t \in S$ is the set of positive integers.
(Hint: You are showing that two sets $A$ and $B$ are equal, which requires showing that both $A \subseteq B$ and $B \subseteq A$.)
