Discrete Structures
 Integers and Division

Chapter 3, Sections 3.4-3.6
Dieter Fox

Integers

Let a, b, and c be integers, $a \neq 0$.
$\diamond a \mid b$: a divides b if there is an integer c such that $b=a c$. When a divides b we say that a is a factor of b and that b is a multiple of a.
\diamond Theorem:

1. if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$;
2. if $a \mid b$, then $a \mid b c$;
3. if $a \mid b$ and $b \mid c$, then $a \mid c$.
\diamond Division algorithm: Let a be an integer and d a poisitive integer. Then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$.
\diamond In the division algorithm, d is called the divisor, a is called the dividend, q is called the quotient, and r is called the remainder.

Modular Arithmetic

$\diamond a \bmod m$: Let a be an integer and m be a positive integer. We denote by a mod m the remainder when a is divided by m.
$\diamond a \equiv b(\bmod m)$ If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides $a-b$.
\diamond Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if $a \bmod m=b \mathbf{~ m o d} m$.
\diamond Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that $a=b+k m$.
\diamond Theorem: Let m be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m))$ and $a c \equiv b d(\bmod m)$.

gcd and lcm

$\diamond \operatorname{gcd}(a, b)$: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b.
\diamond The integers a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
\diamond The integers $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ whenever $1 \leq i<j \leq n$.
$\diamond \operatorname{Icm}(a, b)$: The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b.
\diamond Theorem: Let a and b be positive integers. Then

$$
a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

Euclidean Algorithm

\diamond Lemma: Let $a=b q+r$, where a, b, q, and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

