Discrete Structures

Probability

Chapter 6

Dieter Fox

Discrete Probability

\diamond Probability : The probability of an event E, which is a subset of a finite sample space S of equally likely outcomes, is $p(E)=|E| /|S|$.
\diamond Theorem: Let E be an event in a sample space S. The probability of the event \bar{E}, the complementary event of E, is given by $p(\bar{E})=1-p(E)$.
\diamond Theorem: Let E_{1} and E_{2} be events in a sample space S. Then

$$
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right) .
$$

Probability Theory

\diamond Let S be the sample space of an experiment with a finite or countable number of outcomes. We assign probability $p(s)$ to each outcome s. The following two conditions have to be met:
(i) $0 \leq p(s) \leq 1$ for each $s \epsilon S$
(ii) $\sum_{s \in S} p(s)=1$
\diamond The probability of the event E is the sum of the probabilities of the outcomes in E. That is,

$$
p(E)=\sum_{s \in E} p(s) .
$$

Conditional Probability

\diamond Let E and F be events with $p(F)>0$. The conditional probability of E given F is defined as

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)}
$$

\diamond The events E and F are said to be independent if and only if

$$
p(E \cap F)=p(E) p(F)
$$

Bernoulli Trial

\diamond Bernoulli Trial : Experiment with only two possible outcomes: success or failure.
\diamond Probability of k successes in n independent Bernoulli trials with probability of success p and probability of failure $q=1-p$, is $\binom{n}{k} p^{k} q^{n-k}$.

Random Variables

\diamond A random variable is a function from the sample space of an experiment to the set of real numbers. That is a random variable assigns a real number to each possible outcome.
\diamond The distribution of a random variable X on a sample space S is the set of pairs $(r, p(X=r))$ for all $r \in X(S)$, where $p(X=r)$ is the probability that X takes the value r. A distribution is usually described by specifying $p(X=r)$ for each $r \in X(S)$.

Expectation of Random Variables

\diamond The expected value (or expectation) of a random variable $X(s)$ on the sample space S is equal to

$$
E(X)=\sum_{s \in S} p(s) X(s)
$$

\diamond Theorem : If X is a random variable and $p(X=r)$ is the probability that

$$
X=r \text {, so that } p(X=r)=\sum_{s \in S, X(s)=r} p(s) \text {, then }
$$

$$
E(X)=\sum_{r \in X(S)} p(X=r) r .
$$

Expectation of Random Variables contd.

\diamond Theorem : If X and Y are random variables on a space S, then

$$
E(X+Y)=E(X)+E(Y)
$$

Furthermore, if $X_{i}, i=1,2, \ldots, n$, with n a positive integer, are random variables on S, and $X=X_{1}+X_{2}+\ldots+X_{n}$, then $E(X)=E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots+E\left(X_{n}\right)$. Moreover, if a and b are real numbers, then $E(a X+b)=a E(X)+b$.
\diamond Theorem : The expected number of successes when n Bernoulli trials are performed, where p is the probability of success on each trial, is $n p$.

Independence

\diamond The random variables X and Y on a sample space S are independent if for all real numbers r_{1} and r_{2}

$$
p\left(X(s)=r_{1} \text { and } Y(s)=r_{2}\right) \quad=\quad p\left(X(s)=r_{1}\right) p\left(Y(s)=r_{2}\right) .
$$

\diamond Theorem : If X and Y are independent random variables on a space S, then $E(X Y)=E(X) E(Y)$.

Variance

\diamond Let X be random variables on a sample space S. The variance of X, denoted by $V(X)$, is
$V(X)=\sum_{s \epsilon S}(X(s)-E(X))^{2} p(s)$.
The standard deviation of X, denoted $\sigma(X)$, is defined to be $\sqrt{V(X)}$.
\diamond Theorem : If X is a random variable on a space S, then

$$
V(X)=E\left(X^{2}\right)-E(X)^{2} .
$$

\diamond Theorem : If X and Y are two independent random variables on a space S, then $V(X+Y)=V(X)+V(Y)$. Furthermore, if $X_{i}, i=1,2, \ldots, n$ with n a positive integer, are pairwise random vairables on S, and $X=X_{1}+X_{2}+\ldots+X_{n}$, then $V\left(X_{1}+X_{2}+\ldots+X_{n}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)+\ldots+V\left(X_{n}\right)$.

