Discrete Structures

Logic

Chapter 1, Sections 1.1–1.4

Dieter Fox

Outline

- $\diamondsuit\,$ Propositional Logic
- ♦ Propositional Equivalences
- $\diamondsuit\,$ First-order Logic

Propositional Logic

Let p and q be propositions.

- \Diamond Negation $\neg p$ The statement "It is not the case that *p*." is true, whenever *p* is false and is false otherwise.
- \diamond **Conjunction** $p \land q$ The statement "*p* and *q*" is true when both *p* and *q* are true and is false otherwise.
- \diamondsuit **Disjunction** $p \lor q$ The statement "*p* or *q*" is false when both *p* and *q* are false and is true otherwise.
- \diamondsuit **Exclusive or** $p \oplus q$ The *exclusive or* of p and q is true when exactly one of p and q is true and is false otherwise.

- \diamondsuit There is life on Mars.
- \diamond Today is Friday.

 $\diamond 2+2=4$

 \diamondsuit Bayern Munich is the best soccer team ever!

 $\diamondsuit \ x+2 = 5$

- \diamond Why are we taking this class?
- \diamond This statement is false.
- \diamond This statement is true.

Propositional Logic

Let p and q be propositions.

- \Diamond Implication $p \rightarrow q$ The *implication* $p \rightarrow q$ is false when p is true and q is false and is true otherwise. p is called the hypothesis (antecedent, premise) and q is called the conclusion (consequence).
 - "if p, then q" "p implies q" "p only if q" "p is sufficient for q" "q is necessary for p"
 - $q \rightarrow p$ is called the converse of $p \rightarrow q$
 - $\neg q \rightarrow \neg p$ is called the contrapositive of $p \rightarrow q$
- \diamondsuit **Biconditional** $p \leftrightarrow q$ The *biconditional* $p \leftrightarrow q$ is true whenever p and q have the same truth values and is false otherwise.

Translating English Sentences

 \diamondsuit You can access the Internet from campus only if you are a computer science major or you are not a freshman.

 $\diamond\,$ You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old.

Logical Equivalences

- \diamond **Tautology** A compound statement that is always true.
- \diamond **Contradiction** A compound statement that is always false.
- Contingency A compound statement that is neither a tautology nor a contradiction.
- ♦ Logical equivalence $p \equiv q$ Propositions p and q are called *logically* equivalent if $p \leftrightarrow q$ is a tautology.

Tautologies?

♦ I don't jump off the Empire State Building implies if I jump off the Empire State Building then I float safely to the ground.

♦ ((Smoke \land Heat) \rightarrow Fire) \equiv ((Smoke \rightarrow *Fire*) \lor (Heat \rightarrow Fire))

Logical Equivalences

	· · · · · · · · · · · · · · · · · · ·
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \lor \mathbf{F} \equiv p$	
$p \lor \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \wedge \neg p \equiv \mathbf{F}$	

First-order Logic

♦ Universal quantifier \forall : The *universal quantification* of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse."

♦ Existential quantifier ∃: The *existential quantification* of P(x) is the proposition "There exists an element x in the universe of discourse such that P(x) is true."