CSE 321 Discrete Structures

January 4, 2010
Lecture 01
Propositional Logic

About the course

- From the CSE catalog:
- CSE 321 Discrete Structures (4)

Fundamentals of set theory, graph theory, enumeration, and algebraic structures, with applications in computing. Prerequisite: CSE 143; either MATH 126, MATH 129, or MATH 136.

- What I think the course is about:
- Foundational structures for the practice of computer science and engineering

Why this material is important

- Language and formalism for expressing ideas in computing
- Fundamental tasks in computing
- Translating imprecise specification into a working system
- Getting the details right

Topic List

- Logic/boolean algebra: hardware design, testing, artificial intelligence, databases, software engineering
- Mathematical reasoning/induction: algorithm design, programming languages
- Number theory/probability: cryptography, security, algorithm design, machine learning
- Relations/relational algebra: databases
- Graph theory: networking, social networks, optimization

Administration

- Instructor
- Dan Suciu
- Teaching Assistant
- Andrew Hunter
- Quiz section:

Thursdays

- 1:30-2:20 MGH 242, or
- 2:30-3:20 EEB 054
- Text: Rosen, Discrete Mathematics
- $6^{\text {th }}$ Edition preferred
$-5^{\text {th }}$ Edition okay
- Homework
- Due Wednesdays (starting Jan 13)
- Exams
- Midterms, Feb 5
- Final, March 15, 2:30-4:20
- All course information posted on the web
- Sign up for the course mailing list

Grading

- 50\% homeworks
- 20\% midterm
- 30\% final

Propositional Logic

- Talks about propositions
- can be true or false
- Combine them, to obtain more complex propositions
- Prove that these are true or false
- Not yet enough to describe foundations of mathematic and CS
- Need predicate logic (future lecture)

Propositional Logic

George Boole (1815-1864)

Propositions

- A statement that has a truth value
- Which of the following are propositions?
- The Washington State flag is red
- It snowed in Whistler, BC on January 4, 2010.
- Turn your homework in on Wednesday!
- Why are we taking this class?
- If n is an integer greater than two, then the equation $a^{n}+b^{n}=c^{n}$ has no solutions in non-zero integers a, b, and c .
- Every even integer greater than two can be written as the sum of two primes
- This statement is false
- Propositional variables: p, q, r, s, \ldots
- Truth values: \mathbf{T} for true, \mathbf{F} for false

Compound Propositions

- Negation (not) $\neg \mathrm{p}$
- Conjunction (and) $p \wedge q$
- Disjunction (or) $p \vee q$
- Exclusive or $\quad p \oplus q$
- Implication

$$
p \rightarrow q
$$

- Biconditional

$$
p \leftrightarrow q
$$

Truth Tables

p	$\neg p$
F	
T	

p	q	$p \wedge q$
F	F	
F	T	
T	F	
T	T	

p	q	$p \vee q$
F	F	
F	T	
T	F	
T	T	

p	q	$p \oplus q$
F	F	
F	T	
T	F	
T	T	

x-or example: "you may have soup or salad with your entre"

Truth Tables

p	$\neg p$
F	T
T	F

p	q	$p \wedge q$
F	F	F
F	T	F
T	F	F
T	T	T

p	q	$p \vee q$
F	F	F
F	T	T
T	F	T
T	T	T

p	q	$p \oplus q$
F	F	F
F	T	T
T	F	T
T	T	F

Understanding complex propositions

- Either Harry finds the locket and Ron breaks his wand or Fred will not open a joke shop

Atomic propositions
h: Harry finds the locket
r: Ron breaks his wand
f: Fred opens a joke shop
$(h \wedge r) \oplus \neg f$

Understanding complex propositions with a truth table

h	r	f	$h \wedge r$	$\neg f$	$(h \wedge r) \oplus \neg f$
F	F	F			
F	F	T			
F	T	F			
F	T	T			
T	F	F			
T	F	T			
T	T	F			
T	T	T			

Understanding complex propositions with a truth table

h	r	f	$\mathrm{h} \wedge \mathrm{r}$	$\neg \mathrm{f}$	$(\mathrm{h} \wedge \mathrm{r}) \oplus \neg \mathrm{f}$
F	F	F	F	T	T
F	F	T	F	F	F
F	T	F	F	T	T
F	T	T	F	F	F
T	F	F	F	T	T
T	F	T	F	F	F
T	T	F	T	T	F
T	T	T	T	F	T

Aside: Number of binary operators

- How many different binary operators are there on atomic propositions?

p	q	p op q
F	F	$?$
F	T	$?$
T	F	$?$
T	T	$?$

Answer: $2^{4}=16$

$$
p \rightarrow q
$$

- Implication
- p implies q
- whenever p is true q must be true
- if p then q
$-q$ if p
$-p$ is sufficient for q
$-p$ only if q

p	q	$p \rightarrow q$
F	F	
F	T	
T	F	
T	T	

$$
p \rightarrow q
$$

- Implication
- p implies q
- whenever p is true q must be true
- if p then q
$-q$ if p
$-p$ is sufficient for q
$-p$ only if q

p	q	$\mathrm{p} \rightarrow \mathrm{q}$
F	F	T
F	T	T
T	F	F
T	T	T

True or False?

- If it rains then the pavement gets wet
- If turn in your homework late then you will get 25\% extra credit
- If pigs can whistle then horses can fly

True or False?

- If it rains then the pavement gets wet T
- If turn in your homework late then you will get 25\% extra credit
F
- If pigs can whistle then horses can fly

T

Converse, Contrapositive, Inverse

- Implication: $p \rightarrow q$
- Converse: $q \rightarrow p$
- Contrapositive: $\neg q \rightarrow \neg p$
- Inverse: $\neg p \rightarrow \neg q$
- Are these the same?

Example
p : " x is divisible by 2 "
q : " x is divisible by 4 "

Biconditional $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

p	q	$\mathrm{p} \leftrightarrow \mathrm{q}$
F	F	T
F	T	F
T	F	F
T	T	T

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
$-q$: you can ride the roller coaster
$-r$: you are under 4 feet tall
- s: you are older than 16

$$
(r \wedge \neg s) \rightarrow \neg q
$$

Application: Boolean Searches

- Google for Michael Jordan
- I mean, of course, the leading researcher in machine learning, currently professor at Berkeley
- Type: "Michael Jordan"
- No luck: the web seems obsessed with basketball...
- Type: "Michael Jordan -basketball"
- Now we get it (4 ${ }^{\text {th }}$ answer)

Means "not"

