CSE 321 Discrete Structures

January 4, 2010 Lecture 01 Propositional Logic

About the course

- From the CSE catalog:
 - CSE 321 Discrete Structures (4)
 Fundamentals of set theory, graph theory, enumeration, and algebraic structures, with applications in computing. Prerequisite: CSE 143; either MATH 126, MATH 129, or MATH 136.
- What I think the course is about:
 - Foundational structures for the practice of computer science and engineering

Why this material is important

- Language and formalism for expressing ideas in computing
- Fundamental tasks in computing
 - Translating imprecise specification into a working system
 - Getting the details right

Topic List

- Logic/boolean algebra: hardware design, testing, artificial intelligence, databases, software engineering
- Mathematical reasoning/induction: algorithm design, programming languages
- Number theory/probability: cryptography, security, algorithm design, machine learning
- Relations/relational algebra: databases
- Graph theory: networking, social networks, optimization

Administration

- Instructor
 - Dan Suciu
- Teaching Assistant
 - Andrew Hunter
- Quiz section: Thursdays
 - 1:30 2:20 MGH 242, or
 - 2:30 3:20 EEB 054
- Text: Rosen, Discrete Mathematics
 - 6th Edition preferred
 - 5th Edition okay

- Homework

 Due Wednesdays
 - (starting Jan 13)
- Exams
 - Midterms, Feb 5
 - Final, March 15, 2:30-4:20
- All course information posted on the web
- Sign up for the course mailing list

Grading

- 50% homeworks
- 20% midterm
- 30% final

Propositional Logic

- Talks about propositions
 - can be true or false
- Combine them, to obtain more complex propositions
 - Prove that these are true or false
- Not yet enough to describe foundations of mathematic and CS
 - Need *predicate logic* (future lecture)

Propositional Logic

George Boole (1815-1864)

Propositions

- A statement that has a truth value
- Which of the following are propositions?
 - The Washington State flag is red
 - It snowed in Whistler, BC on January 4, 2010.
 - Turn your homework in on Wednesday !
 - Why are we taking this class?
 - If n is an integer greater than two, then the equation
 aⁿ + bⁿ = cⁿ has no solutions in non-zero integers a, b, and c.
 - Every even integer greater than two can be written as the sum of two primes
 - This statement is false
- Propositional variables: p, q, r, s, . . .
- Truth values: **T** for true, **F** for false

Compound Propositions

- Negation (not) p
- Conjunction (and) $p \wedge q$
- Disjunction (or) $p \lor q$
- Exclusive or $p \oplus q$
- Implication $p \rightarrow q$
- Biconditional $p \leftrightarrow q$

Truth Tables

р	q	$p \oplus q$
F	F	
F	Т	
Т	F	
Т	Т	

x-or example: "you may have soup or salad with your entre"

Truth Tables

p	q	p ^ q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

р	q	$p \lor q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

р	q	$p \oplus q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Understanding complex propositions

 Either Harry finds the locket and Ron breaks his wand or Fred will not open a joke shop

Atomic propositions h: Harry finds the locket

- r: Ron breaks his wand
- f: Fred opens a joke shop

Understanding complex propositions with a truth table

h	r	f	h∧r	¬ f	(h ∧ r) ⊕ ¬ f
F	F	F			
F	F	Т			
F	Т	F			
F	Т	Т			
Т	F	F			
Т	F	Т			
Т	Т	F			
Т	Т	Т			

Understanding complex propositions with a truth table

h	r	f	h∧r	¬ f	(h ∧ r) ⊕ ¬ f
F	F	F	F	Т	Т
F	F	Т	F	F	F
F	Т	F	F	Т	Т
F	Т	Т	F	F	F
Т	F	F	F	Т	Т
Т	F	Т	F	F	F
Т	Т	F	Т	Т	F
Т	Т	Т	Т	F	Т

Aside: Number of binary operators

• How many different binary operators are there on atomic propositions?

р	q	p op q
F	F	?
F	Т	?
Т	F	?
Т	Т	?

Answer:
$$2^4 = 16$$

$p \rightarrow q$

- Implication
 - -p implies q
 - whenever *p* is true *q* must be true
 - if p then q
 - -q if p
 - -p is sufficient for q
 - -p only if q

р	q	$p \rightarrow q$
F	F	
F	Т	
Т	F	
Т	Т	

$p \rightarrow q$

- Implication
 - -p implies q
 - whenever *p* is true *q* must be true
 - if p then q
 - -q if p
 - -p is sufficient for q
 - -p only if q

р	q	$p \rightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

True or False ?

- If it rains then the pavement gets wet
- If turn in your homework late then you will get 25% extra credit
- If pigs can whistle then horses can fly

True or False ?

- If it rains then the pavement gets wet
 T
- If turn in your homework late then you will get 25% extra credit
 F
- If pigs can whistle then horses can fly
 T

Converse, Contrapositive, Inverse

- Implication: $p \rightarrow q$
- Converse: $q \rightarrow p$
- Contrapositive: $\neg q \rightarrow \neg p$
- Inverse: $\neg p \rightarrow \neg q$
- Are these the same?

Example p: "x is divisible by 2" q: "x is divisible by 4"

Biconditional $p \leftrightarrow q$

- *p* iff *q*
- p is equivalent to q
- *p* implies *q* and *q* implies *p*

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - -q: you can ride the roller coaster
 - r: you are under 4 feet tall
 - s: you are older than 16

$$(r \wedge \neg s) \rightarrow \neg q$$

Application: Boolean Searches

- Google for Michael Jordan
 - I mean, of course, the leading researcher in machine learning, currently professor at Berkeley
- Type: "Michael Jordan"
 - No luck: the web seems obsessed with basketball...
- Type: "Michael Jordan _basketball"
 - Now we get it (4th answer)

Means "not"