CSE 321 Discrete Structures

January 6, 2010
Lecture 02
Propositional Logic

Announcements

- Homework 1, Due January 13th
- Reading: sections 1.1, 1.2, 1.3
- Read handout on natural deduction !!
- Quiz section Thursday
 - -1:30-2:20 or 2:30-3:20
- Office hours
 - Dan Suciu, Monday 2:30-3:30
 - Andrew Hunter, CSE 218, T 3:30-4:30, F 12:30-1:30

Highlights from Lecture 1

- Propositional logic
 - Proposition: statement with a truth value
 - Basic connectives

Truth table for implication

p	q	$p \rightarrow q$

Terminology

- A compound proposition is a
 - Tautology if it is always true
 - Satisfiable if it is not always false
 - Contradiction if it is always false
 - Contingency if it can be either true or false

```
p \lor \neg p
(p \oplus p) \lor p
p \oplus \neg p \oplus q \oplus \neg q
(p \to q) \land p
(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)
```

Logical Equivalence

- p and q are Logically Equivalent if $p \leftrightarrow q$ a tautology.
- The notation $p \equiv q$ denotes p and q are logically equivalent
- Example: $(p \rightarrow q) \equiv (\neg p \lor q)$

p	q	$p \rightarrow q$	¬ p	$\neg p \lor q$	$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

The Main Problems in Propositional Logic

Given p, prove that p is a tautology

• Given p, q, prove that p = q

- These are basically the same thing:
 - WHY ?

The Main Problems in Propositional Logic

Given p, prove that p is a tautology

• Given p, q, prove that p = q

- These are basically the same thing:
 - A proposition p is a tautology iff $p \equiv T$
 - $-p = q \text{ iff } p \leftrightarrow q \text{ is a tautology}$

Three Fundamental Approaches

- Truth table
 - We have seen that already
- Algebra:
 - Using logical equivalences
 - Boolean Algebra
- Logic
 - Using formal proof systems
 - We will use: natural deduction

1. Truth Table

Describe an algorithm for checking whether p is a tautology

What is the run time of the algorithm?

A Boolean algebra is a set A, with two binary operations \land and \lor , one unary operation \neg , and two constant 0, 1, satisfying the following:

$$\begin{array}{lll} a\vee(b\vee c)=(a\vee b)\vee c & a\wedge(b\wedge c)=(a\wedge b)\wedge c & \text{associativity} \\ a\vee b=b\vee a & a\wedge b=b\wedge a & \text{commutativity} \\ a\vee(a\wedge b)=a & a\wedge(a\vee b)=a & \text{absorption} \\ a\vee(b\wedge c)=(a\vee b)\wedge(a\vee c) & a\wedge(b\vee c)=(a\wedge b)\vee(a\wedge c) & \text{distributivity} \\ a\vee \neg a=1 & a\wedge\neg a=0 & \text{complements} \end{array}$$

This list is complete. All other equivalences are derived.

Give examples of Boolean algebras:

- ...

 Stone's theorem: every Boolean algebra is isomorphic to an algebra of sets

 Theorem: every Boolean algebra satisfies the following equations, called De Morgan's laws

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

- What are the negations of:
 - Casey has a laptop and Jena has an iPod
 - Clinton will win Iowa or New Hampshire

- There is no implication in a Boolean algebra
- Define as:

$$-p \rightarrow q \equiv \neg p \lor q$$

 This allows us to derive several equivalences for implication

•
$$p \rightarrow q \equiv \neg p \lor q$$

•
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

•
$$p \lor q \equiv \neg p \rightarrow q$$

•
$$p \wedge q \equiv \neg (p \rightarrow \neg q)$$

•
$$p \Leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

•
$$p \Leftrightarrow q \equiv \neg p \Leftrightarrow \neg q$$

•
$$p \Leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

•
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Equivalences for implication

3. Logical Proofs

- Natural deduction
- (on the white board)