CSE 321 Discrete Structures

January 15, 2010 Lecture 06: Practical Proofs

Announcements

- Reading from the textbook
 - Material covered so far: Chapter 1 (read !)
 - Material you need to know: Chapter 2 (read !)
 - Material for the next 3 lectures: Chapter 4 (read !)
- Homework 2

1/15/2

- New due date: Friday, Jan 22
- Martin Luther King Jr. Day, Mon., Jan 18

 $\begin{array}{ll} \forall x (UniversityHoliday(x) \rightarrow NoClass(x)) \land \\ & UniversityHoliday(Monday) \rightarrow & NoClass(Monday) \end{array}$

Outline

- Proof methods today (simple: read Ch. 1)
 - Direct proof
 - Contrapositive proof
 - Proof by contradiction
 - Proof by equivalence
- Sets and functions today (simple: read Ch. 2)
- Proof methods next lectures (subtle: Ch. 4):
 - Induction
 - Complete induction
 - Structural induction

Direct Proof

• If *n* is odd, then n^2 is odd

Definition *n* is even if n = 2k for some integer *k n* is odd if n = 2k+1 for some integer *k*

1/15/2010

CSE 321 Winter 2010 -- Dan Suciu

Contrapositive

- Sometimes it is easier to prove ¬ q → ¬ p
 than it is to prove p → q
- Prove that if $ab \le n$ then $a \le n^{1/2}$ or $b \le n^{1/2}$

Proof by contradiction

- Suppose we want to prove *p* is true.
- Assume *p* is false, and derive a contradiction

Contradiction example

• Show that at least four of any 22 days must fall on the same day of the week

Equivalence Proof

- To show $p_1 \leftrightarrow p_2 \leftrightarrow p_3$, we show $p_1 \rightarrow p_2$, $p_2 \rightarrow p_3$, and $p_3 \rightarrow p_1$
- Show that the following are equivalent
 - $-p_1$: *n* is even
 - $-p_2$: *n*-1 is odd
 - $-p_3$: n^2 is even

The Game of Chomp

CSE 321 Winter 2010 -- Dan Suciu

Theorem: The first player can always win in an $n \times m$ game

- Every position is a forced win for player A or player B (this fact will be used without proof)
- Any finite length, deterministic game with no ties is a win for player A or player B under optimal play

Proof

- Consider taking the lower right cell
 - If this is a forced win for A, then done
 - Otherwise, B has a move m that is a forced win for B, so if A started with this move, A would have a forced win

Tiling problems

 Can an n × n checkerboard be tiled with 2 × 1 tiles?

8×8 Checkerboard with two corners removed

 Can an 8 × 8 checkerboard with upper left and lower right corners removed be tiled with 2 × 1 tiles?

8×8 Checkerboard with two corners removed

 Can an 8 × 8 checkerboard with upper left and lower right corners removed be tiled with 2 × 1 tiles?

8×8 Checkerboard with one corner removed

 Can an 8 × 8 checkerboard with one corner removed be tiled with 3 × 1 tiles?

8×8 Checkerboard with one corner removed

 Can an 8 × 8 checkerboard with one corner removed be tiled with 3 × 1 tiles?

The Chocolate Bar Problem

- You have a 6 × 12 chocolate bar
- You want to split it into 72 pieces
- What is the minimum number of splits ?

The Chocolate Bar Problem

• After two splits:

Set Theory

- Formal treatment dates from late 19th century
- Direct ties between set theory and logic
- Important foundational language

Set Theory

Georg Cantor 1845-1918

Definition: A set is an unordered collection of objects

Definitions

A and B are *equal* if they have the same elements

$$A = B = \forall x (x \in A \Leftrightarrow x \in B)$$

 A is a *subset* of B if every element of A is also in B

$$A \subseteq B = \forall x (x \in A \rightarrow x \in B)$$

Empty Set and Power Set

Cartesian Product : A × B

$A \times B = \{ (a, b) \mid a \in A \land b \in B \}$

Set operations

$$A \cup B = \{ x \mid x \in A \lor x \in B \}$$

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

$$A - B = \{ x \mid x \in A \land x \notin B \}$$

$$A \oplus B = \{ x \mid x \in A \oplus x \in B \}$$

$$\overline{\mathsf{A}} = \{ x \mid x \notin \mathsf{A} \}$$

De Morgan's Laws

$\overline{A \cup B} = \overline{A \cap B}$ $\overline{A \cap B} = \overline{A \cup B}$

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Distributive Laws

CSE 321 Winter 2010 -- Dan Suciu

Russell's Paradox

 $S = \{ x \mid x \notin x \}$

How do we "solve" the paradox ?

CSE 321 Winter 2010 -- Dan Suciu