CSE 321 Discrete Structures

January 15, 2010
Lecture 06: Practical Proofs

Announcements

- Reading from the textbook
- Material covered so far: Chapter 1 (read !)
- Material you need to know: Chapter 2 (read !)
- Material for the next 3 lectures: Chapter 4 (read !)
- Homework 2
- New due date: Friday, Jan 22
- Martin Luther King Jr. Day, Mon., Jan 18

Outline

- Proof methods today (simple: read Ch. 1)
- Direct proof
- Contrapositive proof
- Proof by contradiction
- Proof by equivalence
- Sets and functions today (simple: read Ch. 2)
- Proof methods next lectures (subtle: Ch. 4):
- Induction
- Complete induction
- Structural induction

Direct Proof

- If n is odd, then n^{2} is odd

Definition

n is even if $n=2 k$ for some integer k
n is odd if $n=2 k+1$ for some integer k

Contrapositive

- Sometimes it is easier to prove $\neg q \rightarrow \neg p$ than it is to prove $p \rightarrow q$
- Prove that if $a b \leq n$ then $a \leq n^{1 / 2}$ or $b \leq n^{1 / 2}$

Proof by contradiction

- Suppose we want to prove p is true.
- Assume p is false, and derive a contradiction

Contradiction example

- Show that at least four of any 22 days must fall on the same day of the week

Equivalence Proof

- To show $p_{1} \leftrightarrow p_{2} \leftrightarrow p_{3}$, we show $p_{1} \rightarrow p_{2}$, $p_{2} \rightarrow p_{3}$, and $p_{3} \rightarrow p_{1}$
- Show that the following are equivalent
$-p_{1}$: n is even
$-p_{2}: n-1$ is odd
$-p_{3}: n^{2}$ is even

The Game of Chomp

Theorem: The first player can always win in an $n \times m$ game

- Every position is a forced win for player A or player B (this fact will be used without proof)
- Any finite length, deterministic game with no ties is a win for player A or player B under optimal play

Proof

- Consider taking the lower right cell
- If this is a forced win for A, then done
- Otherwise, B has a move m that is a forced win for B, so if A started with this move, A would have a forced win

Tiling problems

- Can an $n \times n$ checkerboard be tiled with 2×1 tiles?

8×8 Checkerboard with two corners removed

- Can an 8×8 checkerboard with upper left and lower right corners removed be tiled with 2×1 tiles?

8×8 Checkerboard with two corners removed

- Can an 8×8 checkerboard with upper left and lower right corners removed be tiled with 2×1 tiles?

8×8 Checkerboard with one corner removed

- Can an 8×8 checkerboard with one corner removed be tiled with 3×1 tiles?

8×8 Checkerboard with one corner removed

- Can an 8×8 checkerboard with one corner removed be tiled with 3×1 tiles?

The Chocolate Bar Problem

- You have a 6×12 chocolate bar
- You want to split it into 72 pieces
- What is the minimum number of splits ?

The Chocolate Bar Problem

- After two splits:

1/15/2010

Set Theory

- Formal treatment dates from late $19^{\text {th }}$ century
- Direct ties between set theory and logic
- Important foundational language

Set Theory

Georg Cantor 1845-1918

Definition: A set is an unordered collection of objects

Definitions

- A and B are equal if they have the same elements

$$
A=B \equiv \forall x(x \in A \leftrightarrow x \in B)
$$

- A is a subset of B if every element of A is also in B

$$
A \subseteq B \equiv \forall x(x \in A \rightarrow x \in B)
$$

Empty Set and Power Set

Cartesian Product : $\mathrm{A} \times \mathrm{B}$

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Set operations

$$
\begin{aligned}
& A \cup B=\{x \mid x \in A \vee x \in B\} \\
& A \cap B=\{x \mid x \in A \wedge x \in B\} \\
& A-B=\{x \mid x \in A \wedge x \notin B\} \\
& A \oplus B=\{x \mid x \in A \oplus x \in B\}
\end{aligned}
$$

$$
\overline{\mathrm{A}}=\{x \mid x \notin \mathrm{~A}\}
$$

De Morgan’s Laws

$\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cap \overline{\mathrm{B}}$
 $\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and $x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Russell's Paradox

$$
S=\{x \mid x \notin x\}
$$

How do we "solve" the paradox?

