
CSE 321 Discrete Structures

January 20, 2010
Lecture 07: Induction

1/15/2010 1 CSE 321 Winter 2010 -- Dan Suciu

Announcements

•  Reading from the textbook: Chapter 4

•  Homework 1 is graded: check grades here
https://catalysttools.washington.edu/
gradebook/ahhunter/17763

•  Homework 2
– Due date: Friday, Jan 22

1/15/2010 2 CSE 321 Winter 2010 -- Dan Suciu

Outline

•  Mathematical induction
•  Strong induction
•  Inductive definitions
•  Structural induction

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 3

Induction Example

•  Prove 3 | 22n -1 for n ≥ 0

Induction as a rule of Inference

 P(0) ; ∀ k.(P(k) → P(k+1))
 ∀ n.P(n)

Sums

1 + 2 + 4 + … + 2n = 2n+1 - 1

 Prove this by induction

Sums

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 7

?

?

 Prove by induction

Find the sums, then
prove by induction

Harmonic Numbers

More Sums

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 9

Sometimes sums are easiest computed with integrals:

Using these hints, find upper/lower bounds,
then prove them by induction

Cute Application: Checkerboard
Tiling with Trinominos

Prove that a 2k × 2k checkerboard with one
square removed can be tiled with:

Strong Induction
 P(0); ∀ k.((P(0) ∧ P(1) ∧ P(2) ∧ … ∧ P(k)) → P(k+1))
   ∀ n P(n)

Better:

 P(0); ∀ k. ((∀ i ≤ k.P(i)) → P(k+1))
   ∀ n P(n)

Strong Induction Example

•  Construct the following sequence:

•  Prove that: ∀k ≥ 1, ak = 2k-1

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 12

a0 = 1
an+1 = a0+a1+…+an

Strong Induction Example

•  Let P(k) be the statement: ak = 2k-1

•  We prove P(k) by strong induction on k
•  P(1): a1 = a0 = 1 and 20 = 1; they are equal.
•  Assume k ≥ 1, and ∀i≤k, P(i) is true: that is,

ai = 2i-1. Then:

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 13

ak+1 = a0+a1+…+ak =
 = 1 + (1 + 2 + 22 + … + 2k-1)
 = 1 + 2k – 1
 = 2k

Induction Example
•  A set of S integers is non-divisible if there is no pair of

integers a, b in S where a divides b. If there is a pair of
integers a, b in S, where a divides b, then S is divisible.

•  Given a set S of n+1 positive integers, none exceeding
2n, show that S is divisible.

•  What is the largest subset non-divisible subset of
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }.

If S is a set of n+1 positive integers, none
exceeding 2n, then S is divisible

•  Base case: n =1

•  Suppose the result holds for n
–  If S is a set of n+1 positive integers, none

exceeding 2n, then S is divisible
– Let T be a set of n+2 positive integers, none

exceeding 2n+2.

Proof by contradiction
Suppose T is non-divisible.

•  Claim: 2n+1 ∈ T and 2n + 2 ∈ T

•  Claim: n+1 ∈ T

•  Let T* = T – {2n+1, 2n+2} ∪ {n+1}

•  If T is non-divisible, T* is also non-divisible

/

The Game Of Nim

•  Several Matches are placed in rows
•  Player 1 removes any number of matches

from some row
•  Player 2 removes any number of matches

from some row
•  Last player to remove a match wins

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 17

Row 1: |
Row 2: | | |
Row 3: | | | | | |

The Game Of Nim

•  Prove that in the game with two rows and
equal number of matches, the second
player has a winning strategy

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 18

Row 1: | | | | | | | | | | | |
Row 2: | | | | | | | | | | | |

The Game Of Nim

•  Let P(k) be the statement: “Player 2 has a
winning strategy in a game of Nim with two
rows, where each row has k matches”.

•  We prove P(k) by induction on k

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 19

The Game Of Nim
•  P(1): player 1 must remove one

match; player 2 wins

•  Assume k ≥ 1, and ∀i≤k, P(i) is true
Suppose player 1 removes some matches from the first
row, and leaves i matches. Then player 2 removes the
same numberf of matches from row 2. Now wse use the
fact that P(i) is true:

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 20

Row 1: |
Row 2: |

Row 1: | | | | | | |
Row 2: | | | | | | | | | | | |

i

k+1

Row 1: | | | | | | |
Row 2: | | | | | | | .

i

i

Recursive Definitions

•  F(0) = 0; F(n + 1) = F(n) + 1;

•  F(0) = 1; F(n + 1) = 2 × F(n);

•  F(0) = 1; F(n + 1) = 2F(n)

Fibonacci Numbers

•  f0 = 0; f1 = 1; fn = fn-1 + fn-2

Bounding the Fibonacci Numbers

•  Theorem: 2n/2 ≤ fn ≤ 2n for n ≥ 6

More Recursive Definitions

•  f(n) = 2f(n-1) + 1, f(0) = T
•  Telescoping

 f(n)+1 = 2(f(n-1)+1)
 f(n-1)+1 = 2(f(n-2)+1) × 2
 f(n-2)+1 = 2(f(n-3)+1) × 22

 f(1) + 1 = 2(f(0) + 1) × 2n-1

 f(n)+1 = 2n(f(0)+1) = 2n(T+1)

 f(n) = 2n(T+1) - 1

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 24

 Next, prove this by induction

 First, find the expression f

More Recursive Definitions

•  Fibonacci: f(n) = f(n-1)+f(n-2), f(0)=f(1)=1

 try f(n) = A cn What is c ?
 A cn = A cn-1 + A cn-2, c2 – c – 1 = 0

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 25

 First, find the expression f

 Next, prove
this by induction

Recursive Definitions of Sets

•  Recursive definition
– Basis step: 0 ∈ S
– Recursive step: if x ∈ S, then x + 2 ∈ S
– Exclusion rule: Every element in S follows

from basis steps and a finite number of
recursive steps

Recursive definitions of sets

Basis: 6 ∈ S; 15 ∈ S;
Recursive: if x, y ∈ S, then x + y ∈ S;

What is this set ?

Strings

•  The set Σ* of strings over the alphabet Σ is
defined
– Basis: λ ∈ S (λ is the empty string)
– Recursive: if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ*

Function definitions

Len(λ) = 0;
Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ

Concat(w, λ) = w for w ∈ Σ*
Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ

Using Induction for Program
Correctness

•  Mystery program: what does it compute ?

1/15/2010 CSE 321 Winter 2010 -- Dan Suciu 30

public class mystery
{
 public static void main(String [] args)
 {
 int a = ; int b = . . .;
 int x = a; int y = b; int z = 0;

 while (x > 0) {
 if ((x & 1) == 0) { x >>= 1; y <<= 1; }
 { x--; z += y; }
 }
 /* what does this program compute from a and b ? */

 }
}

