CSE 321 Discrete Structures

January 20, 2010
Lecture 07: Induction

Announcements

- Reading from the textbook: Chapter 4
- Homework 1 is graded: check grades here https://catalysttools.washington.edu/ gradebook/ahhunter/17763
- Homework 2
- Due date: Friday, Jan 22

Outline

- Mathematical induction
- Strong induction
- Inductive definitions
- Structural induction

Induction Example

- Prove $3 \mid 2^{2 n}-1$ for $n \geq 0$

Induction as a rule of Inference

$$
\frac{\mathrm{P}(0) ; \quad \forall \mathrm{k} \cdot(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))}{\forall \mathrm{n} \cdot \mathrm{P}(\mathrm{n})}
$$

Sums

$$
1+2+4+\ldots+2^{\mathrm{n}}=2^{\mathrm{n}+1}-1
$$

Prove this by induction

Sunns

$$
\begin{aligned}
& f(n)=1+2+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
& f(n)=1+3+5+\ldots+(2 n-1)=\sum_{i=1}^{n}(2 i-1)=n^{2} \\
& f(n)=1^{2}+2^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

$$
f(n)=1^{3}+2^{3}+\ldots+n^{3}=?
$$

Find the sums, then prove by induction

$$
f(n)=1^{4}+5^{4}+9^{4}+\ldots+(4 n-3)^{4}=\sum_{i=1}^{n}(4 i-3)^{4}=?
$$

Harmonic Numbers

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

Prove $H_{2^{n}} \geq 1+\frac{n}{2}$

More Sums

$$
f(n)=1+3+3^{2}+\ldots+3^{n}=\sum_{i=1}^{n} 3^{i}=\frac{3^{n+1}-1}{3-1}
$$

Sometimes sums are easiest computed with integrals:

$$
\begin{aligned}
& f(n)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}=\sum_{i=1}^{n} \frac{1}{i} \approx 1+\int_{1}^{n} \frac{1}{x} d x=1+\ln (n)-\ln (1) \\
& f(n)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}=\sum_{i=1}^{n} \frac{1}{i^{2}} \approx 1+\int_{1}^{n} \frac{1}{x^{2}} d x=1+\frac{1}{1}-\frac{1}{n}
\end{aligned}
$$

Using these hints, find upper/lower bounds, then prove them by induction

Cute Application: Checkerboard Tiling with Trinominos

Prove that a $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ checkerboard with one square removed can be tiled with:

Strong Induction

$$
\frac{\mathrm{P}(0) ; \quad \forall \mathrm{k} \cdot((\mathrm{P}(0) \wedge \mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(\mathrm{k})) \rightarrow \mathrm{P}(\mathrm{k}+1))}{\forall \mathrm{n} \mathrm{P}(\mathrm{n})}
$$

Better:

Strong Induction Example

- Construct the following sequence:

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n+1}=a_{0}+a_{1}+\ldots+a_{n}
\end{aligned}
$$

- Prove that: $\forall \mathrm{k} \geq 1, \mathrm{a}_{\mathrm{k}}=2^{\mathrm{k}-1}$

Strong Induction Example

- Let $P(k)$ be the statement: $a_{k}=2^{k-1}$
- We prove $P(k)$ by strong induction on k
- $P(1): a_{1}=a_{0}=1$ and $2^{0}=1$; they are equal.
- Assume $k \geq 1$, and $\forall i \leq k, P(i)$ is true: that is, $a_{i}=2^{i-1}$. Then:

$$
\begin{aligned}
\mathrm{a}_{\mathrm{k}+1} & =\mathrm{a}_{0}+\mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{k}}= \\
& =1+\left(1+2+2^{2}+\ldots+2^{\mathrm{k}-1}\right) \\
& =1+2^{\mathrm{k}}-1 \\
& =2^{\mathrm{k}}
\end{aligned}
$$

Induction Example

- A set of S integers is non-divisible if there is no pair of integers a, b in S where a divides b. If there is a pair of integers a, b in S, where a divides b, then S is divisible.
- Given a set S of $n+1$ positive integers, none exceeding $2 n$, show that S is divisible.
- What is the largest subset non-divisible subset of $\{1,2,3,4,5,6,7,8,9,10\}$.

If S is a set of $n+1$ positive integers, none exceeding $2 n$, then S is divisible

- Base case: $\mathrm{n}=1$
- Suppose the result holds for n
- If S is a set of $n+1$ positive integers, none exceeding $2 n$, then S is divisible
- Let T be a set of $n+2$ positive integers, none exceeding $2 n+2$.

Proof by contradiction

Suppose T is non-divisible.

- Claim: $2 n+1 \in T$ and $2 n+2 \in T$
- Claim: $\mathrm{n}+1 \notin \mathrm{~T}$
- Let $T^{*}=T-\{2 n+1,2 n+2\} \cup\{n+1\}$
- If T is non-divisible, T^{*} is also non-divisible

The Game Of Nim

- Several Matches are placed in rows
- Player 1 removes any number of matches from some row
- Player 2 removes any number of matches from some row
- Last player to remove a match wins

The Game Of Nim

- Prove that in the game with two rows and equal number of matches, the second player has a winning strategy

$$
\begin{array}{ll}
\text { Row 1: } & \|\|\|\|\|\|\|\| \\
\text { Row 2: } & \|\|\|\|\|\| \\
\hline
\end{array}
$$

The Game Of Nim

- Let $\mathrm{P}(\mathrm{k})$ be the statement: "Player 2 has a winning strategy in a game of Nim with two rows, where each row has k matches".
- We prove $P(k)$ by induction on k

The Game Of Nim

- $P(1)$: player 1 must remove one match; player 2 wins
- Assume $k \geq 1$, and $\forall i \leq k, P(i)$ is true

Row 1:
Row 2: Suppose player 1 removes some matches from the first row, and leaves i matches. Then player 2 removes the same numberf of matches from row 2 . Now wse use the fact that $P(i)$ is true:

```
Row 1: Row 2:
```


Recursive Definitions

- $F(0)=0 ; F(n+1)=F(n)+1$;
- $F(0)=1 ; F(n+1)=2 \times F(n)$;
- $F(0)=1 ; F(n+1)=2^{F(n)}$

Fibonacci Numbers

$$
\text { - } f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}
$$

Bounding the Fibonacci Numbers

- Theorem: $2^{n / 2} \leq f_{n} \leq 2^{n}$ for $n \geq 6$

More Recursive Definitions

- $f(n)=2 f(n-1)+1, f(0)=T$
- Telescoping
\leftarrow First, find the expression f

$$
\begin{aligned}
& \rightarrow \mathrm{f}(\mathrm{n})+1=2(\mathrm{f}(\mathrm{n}-1)+1) \\
& \begin{array}{ll}
f(n-1)+1=2(f(n-2)+1) & \times 2 \\
f(n-2)+1=2(f(n-3)+1) & \times 2^{2}
\end{array} \\
& f(1)+1=2(f(0)+1) \quad \times 2^{n-1} \\
& \rightarrow \mathrm{f}(\mathrm{n})+1=2^{\mathrm{n}}(\mathrm{f}(0)+1)=2^{\mathrm{n}}(\mathrm{~T}+1) \\
& \rightarrow f(n)=2^{n}(T+1)-1 \quad \leftarrow \text { Next, prove this by induction }
\end{aligned}
$$

More Recursive Definitions

- Fibonacci: $f(n)=f(n-1)+f(n-2), f(0)=f(1)=1$
\leftarrow First, find the expression f
\rightarrow try $f(n)=A c^{n}$ What is c ?
$A c^{n}=A c^{n-1}+A c^{n-2}, \quad c^{2}-c-1=0$
$c_{1,2}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}$
$f(n)=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n} \quad \begin{aligned} & \leftarrow \text { Next, prove } \\ & \text { this by induction }\end{aligned}$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

What is this set?

Strings

- The set Σ^{*} of strings over the alphabet Σ is defined
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

Function definitions

$\operatorname{Len}(\lambda)=0 ;$
$\operatorname{Len}(w x)=1+\operatorname{Len}(w) ;$ for $w \in \Sigma^{*}, x \in \Sigma$
$\operatorname{Concat}(\mathrm{w}, \boldsymbol{\lambda})=\mathrm{w}$ for $\mathrm{w} \in \Sigma^{*}$
$\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2} \mathrm{x}\right)=\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \mathrm{x}$ for $\mathrm{w}_{1}, \mathrm{w}_{2}$ in $\Sigma^{*}, \mathrm{x} \in \Sigma$

Using Induction for Program Correctness

- Mystery program: what does it compute ?

```
public class mystery
{
    public static void main( String [ ] args )
    {
        int a = . . . ; int b = . . .;
        int }\textrm{x}=\textrm{a};\mathrm{ int }\textrm{y}=\textrm{b};\mathrm{ int }\textrm{z}=0\mathrm{ ;
        while (x>0) {
        if ((x & 1) == 0) {x>>= 1; y<<= 1;}
        {x--; z += y; }
        }
        /* what does this program compute from a and b ? */
    }
}
```

