
CSE 321  Discrete Structures 

January 20, 2010 
Lecture 07: Induction 
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Announcements 

•  Reading from the textbook: Chapter 4 

•  Homework 1 is graded: check grades here 
https://catalysttools.washington.edu/
gradebook/ahhunter/17763 

•  Homework 2 
– Due date: Friday, Jan 22 
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Outline 

•  Mathematical induction 
•  Strong induction 
•  Inductive definitions 
•  Structural induction 
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Induction Example 

•  Prove 3 | 22n -1 for n ≥ 0 



Induction as a rule of Inference 

    P(0)  ;     ∀ k.(P(k) → P(k+1)) 
                ∀ n.P(n) 



Sums 

1 + 2 + 4 + … + 2n = 2n+1 - 1 

 Prove this by induction 



Sums 
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? 

? 

 Prove by induction 

Find the sums, then 
prove by induction 



Harmonic Numbers 



More Sums 
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Sometimes sums are easiest computed with integrals: 

Using these hints, find upper/lower bounds, 
then prove them by induction 



Cute Application: Checkerboard 
Tiling with Trinominos 

Prove that a 2k × 2k checkerboard with one  
square removed can be tiled with:  



Strong Induction 
 P(0);   ∀ k.((P(0) ∧ P(1) ∧ P(2) ∧ … ∧ P(k)) → P(k+1)) 
                                     ∀ n P(n) 

Better:  

 P(0);                 ∀ k. ( (∀ i ≤ k.P(i))   →    P(k+1)) 
                                     ∀ n P(n) 



Strong Induction Example 

•  Construct the following sequence: 

•  Prove that: ∀k ≥ 1, ak = 2k-1 
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a0 = 1 
an+1 = a0+a1+…+an 



Strong Induction Example 

•  Let P(k) be the statement: ak = 2k-1 

•  We prove P(k) by strong induction on k 
•  P(1):  a1 = a0 = 1 and 20 = 1; they are equal. 
•  Assume k ≥ 1, and ∀i≤k, P(i) is true: that is, 

ai = 2i-1.  Then: 
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ak+1 = a0+a1+…+ak = 
      = 1 + (1 + 2 + 22 + … + 2k-1) 
      = 1 + 2k – 1 
      =  2k  



Induction Example 
•  A set of S integers is non-divisible if there is no pair of 

integers a, b in S where a divides b.  If there is a pair of 
integers a, b in S, where a divides b, then S is divisible. 

•  Given a set  S of n+1 positive integers,  none exceeding 
2n,  show that S is divisible. 

•  What is the largest subset non-divisible subset of         
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }. 



If S is a set of n+1 positive integers, none 
exceeding 2n,  then S is divisible  

•  Base case:  n =1  

•  Suppose the result holds for n 
–  If S is a set of n+1 positive integers, none 

exceeding 2n,  then S is divisible  
– Let T be a set of n+2 positive integers, none 

exceeding 2n+2.   



Proof by contradiction 
Suppose T is non-divisible. 

•  Claim: 2n+1 ∈ T and 2n + 2 ∈ T 

•  Claim: n+1 ∈ T 

•  Let T* = T – {2n+1, 2n+2} ∪ {n+1} 

•  If T is non-divisible, T* is also non-divisible 

/ 



The Game Of Nim 

•  Several Matches are placed in rows 
•  Player 1 removes any number of matches 

from some row 
•  Player 2 removes any number of matches 

from some row 
•  Last player to remove a match wins 
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Row 1:        | 
Row 2:      | | | 
Row 3:    | | | | | | 



The Game Of Nim 

•  Prove that in the game with two rows and 
equal number of matches, the second 
player has a winning strategy 
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Row 1:      | | | | | | | | | | | | 
Row 2:      | | | | | | | | | | | | 



The Game Of Nim 

•  Let P(k) be the statement: “Player 2 has a 
winning strategy in a game of Nim with two 
rows, where each row has k matches”. 

•  We prove P(k) by induction on k 
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The Game Of Nim 
•  P(1): player 1 must remove one 

match; player 2 wins 

•  Assume k ≥ 1, and ∀i≤k, P(i) is true 
Suppose player 1 removes some matches from the first 
row, and leaves i matches. Then player 2 removes the 
same numberf of matches from row 2. Now wse use the 
fact that P(i) is true: 
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Row 1:      |  
Row 2:      |  

Row 1:      | | | | | | |  
Row 2:      | | | | | | | | | | | | 

i 

k+1 

Row 1:      | | | | | | |  
Row 2:      | | | | | | |      . 

i 

i 



Recursive Definitions 

•  F(0) = 0;  F(n + 1) = F(n) + 1; 

•  F(0) = 1;  F(n + 1) =  2 × F(n); 

•  F(0) = 1;  F(n + 1) = 2F(n) 



Fibonacci Numbers 

•  f0 = 0; f1 = 1; fn = fn-1 + fn-2 



Bounding the Fibonacci Numbers 

•  Theorem:   2n/2 ≤ fn ≤ 2n for n ≥ 6 



More Recursive Definitions 

•  f(n) = 2f(n-1) + 1,  f(0) = T 
•  Telescoping 

 f(n)+1    = 2(f(n-1)+1) 
     f(n-1)+1 = 2(f(n-2)+1)      × 2 
     f(n-2)+1 = 2(f(n-3)+1)      × 22 
      . . . . . 
     f(1) + 1  = 2(f(0) + 1)        × 2n-1 

 f(n)+1    = 2n(f(0)+1)  = 2n(T+1) 

 f(n) = 2n(T+1) - 1 

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 24 

 Next, prove this by induction 

 First, find the expression f 



More Recursive Definitions 

•  Fibonacci:  f(n) = f(n-1)+f(n-2), f(0)=f(1)=1 

 try f(n) = A cn   What is c ? 
   A cn = A cn-1 + A cn-2,       c2 – c – 1 = 0 
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 First, find the expression f 

 Next, prove  
this by induction 



Recursive Definitions of Sets 

•  Recursive definition 
– Basis step:  0 ∈ S 
– Recursive step:  if x ∈ S, then x + 2 ∈ S 
– Exclusion rule:  Every element in S follows 

from basis steps and a finite number of 
recursive steps 



Recursive definitions of sets 

Basis:   6 ∈ S;  15 ∈ S; 
Recursive:  if x, y ∈ S, then x + y ∈ S; 

What is this set ? 



Strings 

•  The set Σ* of strings over the alphabet Σ is 
defined 
– Basis:  λ ∈ S  (λ is the empty string) 
– Recursive:  if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ* 



Function definitions 

Len(λ) = 0; 
Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ

Concat(w, λ) = w for w ∈ Σ* 
Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ



Using Induction for Program 
Correctness 

•  Mystery program: what does it compute ? 
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public class mystery 
{ 
    public static void main( String [ ] args ) 
    { 
        int a = . . . . ; int b = . . .; 
        int x = a; int y = b; int z = 0; 

 while (x > 0) { 
     if ((x & 1) == 0) { x >>= 1; y <<= 1; } 
     { x--; z += y; } 
 } 
 /* what does this program compute from a and b ? */ 

    } 
} 


