CSE 321 Discrete Structures

January 22, 2010
Lecture 08: Inductive Definitions

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$

What is the set S ?

- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Terminology: "Recursive definition" = "Inductive Definition"

Recursive Definitions of Sets

- Recursive definition
- Basis step: $7 \in S$
- Recursive step: if $x \in S, x \in S$, then $x-y \in S$
- Note: here we allow arbitrary integers, positive and negative

What is the set S ?

Recursive Definitions of Sets

- Recursive definition
- Basis step: $12 \in S$ and $21 \in S$
- Recursive step: if $x \in S, x \in S$, then $x-y \in S$

What is the set S ?

Strings

The set Σ^{*} of strings over the alphabet Σ is defined as follows:

- Basis: $\lambda \in \Sigma^{*}$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

Note: we sometimes write ε for the empty string

Strings

- Example: $\Sigma=\{a, b, c\}$. What is Σ^{*} ?
- $\Sigma^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$

Families of strings over $\Sigma=\{a, b\}$

- L_{1}
$-\lambda \in L_{1}$
$-w \in L_{1}$ then awb $\in L_{1}$
- What is L_{1} ?

Families of strings over $\Sigma=\{$ a, b $\}$

- L_{2}

$$
\begin{aligned}
& -\lambda \in \mathrm{L}_{2} \\
& -\mathrm{w} \in \mathrm{~L}_{2} \text { then } \mathrm{aw} \in \mathrm{~L}_{2} \\
& -\mathrm{w} \in \mathrm{~L}_{2} \text { then } \mathrm{wb} \in \mathrm{~L}_{2}
\end{aligned}
$$

- What is L_{2} ?

Families of strings over $\Sigma=\{a, b\}$

- Think of a as "(" and of b as ")"
- Define recursively the set L_{3} of all wellformed parenthesis
- Strings that should be in L_{3} :
- aaabbb, abababab, aabbabaaabbb, ...
- Strings that should not be in L_{3} :
- aab (too many a's), ba (unmatched), abbaab (unmatched)

Recursive Function definitions

The length of a string: Len : $\Sigma^{*} \rightarrow$ Int

$$
\begin{aligned}
& \operatorname{Len}(\lambda)=0 \\
& \operatorname{Len}(w x)=1+\boldsymbol{\operatorname { L e n }}(w) ; \text { for } w \in \Sigma^{*}, x \in \Sigma
\end{aligned}
$$

The concatenation of two strings: Concat: $\Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$
Concat $(\mathrm{w}, \lambda)=\mathrm{w}$ for $\mathrm{w} \in \Sigma^{*}$
$\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2} \mathrm{x}\right)=\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \mathrm{x}$ for $\mathrm{w}_{1}, \mathrm{w}_{2}$ in $\Sigma^{*}, \mathrm{x} \in \Sigma$

Well Formed Fomulae

- $\Sigma=\{p, q, r, s, \ldots, T, F, \wedge, \vee, \rightarrow, \neg,()$,
- Define Well-Formed-Formula for propositional logic
- Basis Step
$-\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \ldots \mathrm{T}, \mathrm{F}$ are in WFF
- Recursive Step
- If E and F are in WFF then $(\neg E)$, ($E \wedge F$), ($E v$
F), ($\mathrm{E} \rightarrow \mathrm{F}$) are in WFF

Well Formed Fomulae

Write recursive definitions on WFF for the following functions:

- Count the number of Λ 's in the formula
- Test if a formula is positive, i.e. every atomic formula occurs under an even number of \neg symbols (recall that $p \rightarrow q=\neg p \vee q$):
$(\neg(\neg p \wedge \neg q)) \vee(s \wedge \neg \neg t)$ is positive
$(\neg p \rightarrow s) \wedge t$ is positive
$p \rightarrow s$ is not positive

Di-Graphs (Directed Graphs)

- Nodes: A,B,...
- Edges: $A \rightarrow B, \ldots$
- Paths from A to E : A,B,E
A,B,D,E

A,B,F,A,B,F,A,B,E

- Cycle: A,B,F,A

DAGs and Trees

A Directed Acyclic Graph (DAG) is a graph without cycles

A tree is like this:

What is a "tree" ?

- "A tree is a graph such that...."
- How would you define a tree?
- Want a tree to have a distinguished node, called the "root"

A Recursive Definition of Trees

- A graph with a single node r is a tree and its root is r
- If $t_{1}, t_{2}, \ldots, t_{n}$ are trees with roots $r_{1}, r_{2}, \ldots, r_{n}$ then the graph consisting of $t_{1}, t_{2}, \ldots, t_{n}$, a new node r, and n edges (r, r_{i}), $\mathrm{i}=1, \mathrm{n}$, is a tree and its
 root is r.

Extended Binary Trees

- The empty graph is an extended binary tree
- A nonempty extended binary tree has a root node r, with a left child t_{1} and a right child t_{2} s.t. both t_{1} and t_{2} are
 extended binary trees

Subtle Distinction

In an extended binary tree we distinguish between the left child and the right child:

Left child only Right child only
Not an "extended" binary tree

Full binary trees

- Now we want to rule out the empty trees and empty subtrees: "full binary tree"
- How do we do this ?

Extended Binary Trees

- The graph consisting of a single node is a full binary tree
- A nonempty full binary tree has a root node r, with a left child t_{1} and a right child t_{2} s.t. both t_{1}
 and t_{2} are full binary trees

Simplifying notation

- $\left(\bullet, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)$, tree with left subtree T_{1} and right subtree T_{2}
- ε is the empty tree
- Extended Binary Trees (EBT)
$-\varepsilon \in E B T$
- if $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \mathrm{EBT}$, then $\left(\cdot, \mathrm{T}_{1}, \mathrm{~T}_{2}\right) \in \mathrm{EBT}$
- Full Binary Trees (FBT)
$-\bullet \in F B T$
- if $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \mathrm{FBT}$, then $\left(\cdot, \mathrm{T}_{1}, \mathrm{~T}_{2}\right) \in \mathrm{FBT}$

Recursive Functions on Trees

- $N(T)$ - number of vertices of T
- $N(\varepsilon)=0 ; N(\cdot)=1$
- $N\left(\cdot, T_{1}, T_{2}\right)=1+N\left(T_{1}\right)+N\left(T_{2}\right)$
- $\mathrm{Ht}(\mathrm{T})$ - height of T
- $\mathrm{Ht}(\varepsilon)=0 ; \mathrm{Ht}(\cdot)=1$
- $\mathrm{Ht}\left(\cdot, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)=1+\max \left(\mathrm{Ht}\left(\mathrm{T}_{1}\right), \operatorname{Ht}\left(\mathrm{T}_{2}\right)\right)$

NOTE: Height definition differs from the text Base case $\mathrm{H}(\bullet)=0$ used in text

More tree definitions: Fully balanced binary trees

- ε is a FBBT.
- if T_{1} and T_{2} are FBBTs, with $\mathrm{Ht}\left(\mathrm{T}_{1}\right)=$ $\mathrm{Ht}\left(\mathrm{T}_{2}\right)$, then $\left(\cdot, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is a FBBT.

And more trees:
 Almost balanced trees

- ε is a ABT.
- if T_{1} and T_{2} are ABTs with $\operatorname{Ht}\left(T_{1}\right)-1 \leq \operatorname{Ht}\left(T_{2}\right) \leq \operatorname{Ht}\left(T_{1}\right)+1$ then $\left(\cdot, T_{1}, T_{2}\right)$ is a ABT.

