
CSE 321 Discrete Structures

January 22, 2010
Lecture 08: Inductive Definitions

1/15/2010 1 CSE 321 Winter 2010 -- Dan Suciu

Recursive Definitions of Sets

•  Recursive definition
– Basis step: 0 ∈ S
– Recursive step: if x ∈ S, then x + 2 ∈ S

•  Exclusion rule: Every element in S follows
from basis steps and a finite number of
recursive steps

What is the set S ?

Terminology: “Recursive defini;on” = “Induc;ve Defini;on”

Recursive Definitions of Sets

•  Recursive definition
– Basis step: 7 ∈ S
– Recursive step: if x ∈ S, x ∈ S, then x - y ∈ S

•  Note: here we allow arbitrary integers,
positive and negative

What is the set S ?

Recursive Definitions of Sets

•  Recursive definition
– Basis step: 12 ∈ S and 21 ∈ S
– Recursive step: if x ∈ S, x ∈ S, then x - y ∈ S

What is the set S ?

Strings

The set Σ* of strings over the alphabet Σ is
defined as follows:

•  Basis: λ ∈ Σ* (λ is the empty string)

•  Recursive: if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ*

Note: we some;mes write ε for the empty string

Strings

•  Example: Σ = {a, b, c}. What is Σ* ?

•  Σ* = { ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}

Families of strings over Σ = {a, b}

•  L1
–  λ ∈ L1

– w ∈ L1 then awb ∈ L1

•  What is L1 ?

Families of strings over Σ = {a, b}

•  L2
–  λ ∈ L2

– w ∈ L2 then aw ∈ L2

– w ∈ L2 then wb ∈ L2

•  What is L2 ?

Families of strings over Σ = {a, b}

•  Think of a as “(“ and of b as “)”
•  Define recursively the set L3 of all well-

formed parenthesis

•  Strings that should be in L3:
–  aaabbb, abababab, aabbabaaabbb, …

•  Strings that should not be in L3:
–  aab (too many a’s), ba (unmatched), abbaab

(unmatched)

Recursive Function definitions

The length of a string: Len : Σ*  Int
 Len(λ) = 0;
 Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ

The concatenation of two strings: Concat: Σ* × Σ*  Σ*
 Concat(w, λ) = w for w ∈ Σ*
 Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ

Well Formed Fomulae

•  Σ = {p, q, r, s, …, T, F, ∧, ∨, , ¬, (,)}
•  Define Well-Formed-Formula for

propositional logic
•  Basis Step

– p, q, r, s, … T, F are in WFF
•  Recursive Step

–  If E and F are in WFF then (¬ E), (E∧ F), (E∨
F), (E→ F) are in WFF

Well Formed Fomulae

Write recursive definitions on WFF for the
following functions:

•  Count the number of ∧’s in the formula
•  Test if a formula is positive, i.e. every atomic

formula occurs under an even number of ¬
symbols (recall that p  q = ¬p ∨ q):
(¬ (¬ p ∧ ¬ q)) ∨ (s ∧ ¬¬ t) is positive
(¬ p  s) ∧ t is positive
p  s is not positive

Di-Graphs (Directed Graphs)

•  Nodes: A,B,…
•  Edges: AB, …

•  Paths from A to E:
A,B,E
A,B,D,E
A,B,F,A,B,F,A,B,E

•  Cycle: A,B,F,A
10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 13

A

E

B

D

F

C

G

DAGs and Trees

A Directed Acyclic
Graph (DAG) is a
graph without cycles

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 14

A

E

B

D

F

C

G

A

E

B

D F

C

G

I H

K J L

A tree is like this:

What is a “tree” ?

•  “A tree is a graph such that….”
– How would you define a tree ?
– Want a tree to have a distinguished node,

called the “root”

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 15

A Recursive Definition of Trees
•  A graph with a single

node r is a tree and its
root is r

•  If t1, t2, …, tn are trees
with roots r1, r2, …, rn
then the graph consisting
of t1, t2, …, tn , a new
node r, and n edges (r, ri),
i=1,n, is a tree and its
root is r.

10/10/2009 16

r

CSE 373 Fall 2009 -- Dan Suciu

r

. . .

r1 r2 rn

t1 t2 tn

Extended Binary Trees

•  The empty graph is an
extended binary tree

•  A nonempty extended
binary tree has a root
node r, with a left child
t1 and a right child t2 s.t.
both t1 and t2 are
extended binary trees

10/10/2009 17

r

CSE 373 Fall 2009 -- Dan Suciu

t1 t2

Subtle Distinction

10/10/2009 CSE 373 Fall 2009 -- Dan Suciu 18

In an extended binary tree we distinguish between the
left child and the right child:

A

B

A

B

A

B

Left child only Right child only Not an “extended”
binary tree

Full binary trees

•  Now we want to rule out the empty trees
and empty subtrees: “full binary tree”

•  How do we do this ?

Extended Binary Trees

•  The graph consisting of a
single node is a full
binary tree

•  A nonempty full binary
tree has a root node r,
with a left child t1 and a
right child t2 s.t. both t1
and t2 are full binary trees

10/10/2009 20

r

CSE 373 Fall 2009 -- Dan Suciu

t1 t2

r

Simplifying notation

•  (•, T1, T2), tree with left subtree T1 and
right subtree T2

•  ε is the empty tree
•  Extended Binary Trees (EBT)

–  ε ∈ EBT
–  if T1, T2 ∈ EBT, then (•, T1, T2) ∈ EBT

•  Full Binary Trees (FBT)
–  • ∈ FBT
–  if T1, T2 ∈ FBT, then (•, T1, T2) ∈ FBT

Recursive Functions on Trees

•  N(T) - number of vertices of T
•  N(ε) = 0; N(•) = 1
•  N(•, T1, T2) = 1 + N(T1) + N(T2)

•  Ht(T) – height of T
•  Ht(ε) = 0; Ht(•) = 1
•  Ht(•, T1, T2) = 1 + max(Ht(T1), Ht(T2))

NOTE: Height definition differs from the text
Base case H(•) = 0 used in text

More tree definitions: Fully
balanced binary trees

•  ε is a FBBT.
•  if T1 and T2 are FBBTs, with Ht(T1) =

Ht(T2), then (•, T1, T2) is a FBBT.

And more trees:
Almost balanced trees

•  ε is a ABT.
•  if T1 and T2 are ABTs with

Ht(T1) -1 ≤ Ht(T2) ≤ Ht(T1)+1
then (•, T1, T2) is a ABT.

