CSE 321 Discrete Structures

January 22, 2010 Lecture 08: Inductive Definitions

Recursive Definitions of Sets

- Recursive definition
 - Basis step: $0 \in S$
 - Recursive step: if $x \in S$, then $x + 2 \in S$

What is the set S?

 Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Terminology: "Recursive definition" = "Inductive Definition"

Recursive Definitions of Sets

- Recursive definition
 - Basis step: $7 \in S$
 - Recursive step: if $x \in S$, $x \in S$, then $x y \in S$
- Note: here we allow arbitrary integers, positive and negative

What is the set S?

Recursive Definitions of Sets

- Recursive definition
 - Basis step: $12 \in S$ and $21 \in S$
 - Recursive step: if $x \in S$, $x \in S$, then $x y \in S$

What is the set S?

Strings

The set Σ^* of strings over the alphabet Σ is defined as follows:

- Basis: $\lambda \in \Sigma^*$ (λ is the empty string)
- Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$

Note: we sometimes write ε for the empty string

Strings

- Example: $\Sigma = \{a, b, c\}$. What is Σ^* ?
- Σ* = { ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}

Families of strings over $\Sigma = \{a, b\}$

- L_1 - $\lambda \in L_1$ - $w \in L_1$ then $awb \in L_1$
- What is L_1 ?

Families of strings over $\Sigma = \{a, b\}$

• L_2 $-\lambda \in L_2$ $-w \in L_2$ then $aw \in L_2$ $-w \in L_2$ then $wb \in L_2$

• What is L_2 ?

Families of strings over $\Sigma = \{a, b\}$

- Think of a as "(" and of b as ")"
- Define recursively the set L₃ of all wellformed parenthesis
- Strings that should be in L₃:
 - aaabbb, abababab, aabbabaaabbb, ...
- Strings that should not be in L₃:
 - aab (too many a's), ba (unmatched), abbaab (unmatched)

Recursive Function definitions

The length of a string: Len : $\Sigma^* \rightarrow$ Int Len(λ) = 0; Len(wx) = 1 + Len(w); for w $\in \Sigma^*$, x $\in \Sigma$

The concatenation of two strings: Concat: $\Sigma^* \times \Sigma^* \rightarrow \Sigma^*$ Concat(w, λ) = w for w $\in \Sigma^*$ Concat(w₁,w₂x) = Concat(w₁,w₂)x for w₁, w₂ in Σ^* , x $\in \Sigma$

Well Formed Fomulae

- $\Sigma = \{p, q, r, s, \dots, T, F, \Lambda, \vee, \rightarrow, \neg, (,)\}$
- Define Well-Formed-Formula for propositional logic
- Basis Step
 - p, q, r, s, ... T, F are in WFF
- Recursive Step
 - If E and F are in WFF then (¬ E), (E∧ F), (E∨
 F), (E→ F) are in WFF

Well Formed Fomulae

Write recursive definitions on WFF for the following functions:

- Count the number of Λ 's in the formula
- Test if a formula is *positive*, i.e. every atomic formula occurs under an even number of ¬ symbols (recall that p → q = ¬p V q):

 $(\neg (\neg p \land \neg q)) \lor (s \land \neg \neg t)$ is positive $(\neg p \rightarrow s) \land t$ is positive $p \rightarrow s$ is not positive

Di-Graphs (Directed Graphs)

- Nodes: A,B,...
- Edges: A→B, ...
- Paths from A to E:
 A,B,E
 A,B,D,E
 A,B,F,A,B,F,A,B,E
- <u>Cycle</u>: A,B,F,A

DAGs and Trees

What is a "tree" ?

- "A tree is a graph such that...."
 - How would you define a tree ?
 - Want a tree to have a distinguished node, called the "root"

A Recursive Definition of Trees

- A graph with a single node r is a tree and its root is r
- If $t_1, t_2, ..., t_n$ are trees with roots $r_1, r_2, ..., r_n$ then the graph consisting of $t_1, t_2, ..., t_n$, a new node r, and n edges (r, r_i), i=1,n, is a tree and its root is r.

Extended Binary Trees

- The empty graph is an extended binary tree
- A nonempty extended binary tree has a root node r, with a left child t₁ and a right child t₂ s.t. both t₁ and t₂ are extended binary trees

Subtle Distinction

In an extended binary tree we distinguish between the left child and the right child:

Full binary trees

- Now we want to rule out the empty trees and empty subtrees: "full binary tree"
- How do we do this ?

Extended Binary Trees

- The graph consisting of a single node is a full binary tree
- A nonempty full binary tree has a root node r, with a left child t₁ and a right child t₂ s.t. both t₁ and t₂ are full binary trees

Simplifying notation

- (•, T₁, T₂), tree with left subtree T₁ and right subtree T₂
- ϵ is the empty tree
- Extended Binary Trees (EBT)
 - $\epsilon \in EBT$
 - if $T_1, T_2 \in EBT$, then (•, $T_1, T_2) \in EBT$
- Full Binary Trees (FBT)
 - $\bullet \in \mathsf{FBT}$
 - if $T_1, T_2 \in FBT$, then (•, $T_1, T_2) \in FBT$

Recursive Functions on Trees

- N(T) number of vertices of T
- N(ε) = 0; N(•) = 1
- $N(\bullet, T_1, T_2) = 1 + N(T_1) + N(T_2)$
- Ht(T) height of T
- $Ht(\varepsilon) = 0; Ht(\bullet) = 1$
- $Ht(\bullet, T_1, T_2) = 1 + max(Ht(T_1), Ht(T_2))$

NOTE: Height definition differs from the text Base case $H(\bullet) = 0$ used in text More tree definitions: Fully balanced binary trees

- ϵ is a FBBT.
- if T_1 and T_2 are FBBTs, with Ht(T_1) = Ht(T_2), then (•, T_1 , T_2) is a FBBT.

And more trees: Almost balanced trees

- ϵ is a ABT.
- if T_1 and T_2 are ABTs with Ht(T_1) -1 \leq Ht(T_2) \leq Ht(T_1)+1 then (•, T_1 , T_2) is a ABT.