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Recursive Definitions of Sets 

•  Recursive definition 
– Basis step:  0 ∈ S 
– Recursive step:  if x ∈ S, then x + 2 ∈ S 

•  Exclusion rule:  Every element in S follows 
from basis steps and a finite number of 
recursive steps 

What is the set S ? 

Terminology: “Recursive defini;on” = “Induc;ve Defini;on” 



Recursive Definitions of Sets 

•  Recursive definition 
– Basis step:  7 ∈ S 
– Recursive step:  if x ∈ S, x ∈ S, then x - y ∈ S 

•  Note: here we allow arbitrary integers, 
positive and negative 

What is the set S ? 



Recursive Definitions of Sets 

•  Recursive definition 
– Basis step:  12 ∈ S and 21 ∈ S 
– Recursive step:  if x ∈ S, x ∈ S, then x - y ∈ S 

What is the set S ? 



Strings 

The set Σ* of strings over the alphabet Σ is 
defined as follows: 

•  Basis:  λ ∈ Σ* (λ is the empty string) 

•  Recursive:  if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ* 

Note: we some;mes write ε for the empty string 



Strings 

•  Example: Σ = {a, b, c}.  What is Σ* ? 

•  Σ* = { ε, a, b, aa, ab, ba, bb, aaa, aab, . . .} 



Families of strings over Σ = {a, b} 

•  L1 
–   λ ∈ L1 

– w ∈ L1 then awb ∈ L1 

•  What is  L1 ? 



Families of strings over Σ = {a, b} 

•  L2 
–   λ ∈ L2 

– w ∈ L2 then aw ∈ L2 

– w ∈ L2 then wb ∈ L2 

•  What is  L2 ? 



Families of strings over Σ = {a, b} 

•  Think of a as “(“ and of b as “)” 
•  Define recursively the set L3 of all well-

formed parenthesis 

•  Strings that should be in L3: 
–  aaabbb,  abababab, aabbabaaabbb, … 

•  Strings that should not be in L3: 
–  aab (too many a’s), ba (unmatched), abbaab 

(unmatched) 



Recursive Function definitions 

The length of a string: Len : Σ*  Int 
 Len(λ) = 0; 
 Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ


The concatenation of two strings: Concat: Σ* × Σ*  Σ* 
 Concat(w, λ) = w for w ∈ Σ* 
 Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ




Well Formed Fomulae 

•  Σ = {p, q, r, s, …, T, F, ∧, ∨, , ¬, (, )} 
•  Define Well-Formed-Formula for 

propositional logic 
•  Basis Step 

– p, q, r, s, … T, F are in WFF 
•  Recursive Step 

–  If E and F are in WFF then (¬ E), (E∧ F),  (E∨ 
F), (E→ F) are in WFF 



Well Formed Fomulae 

Write recursive definitions on WFF for the 
following functions: 

•  Count the number of ∧’s in the formula 
•  Test if a formula is positive, i.e. every atomic 

formula occurs under an even number of ¬  
symbols (recall that p  q = ¬p ∨ q): 
(¬ (¬ p ∧ ¬ q ))  ∨ (s ∧ ¬¬ t) is positive 
(¬ p  s) ∧ t  is positive 
p  s  is not positive 



Di-Graphs (Directed Graphs) 

•  Nodes: A,B,… 
•  Edges: AB, … 

•  Paths from A to E: 
A,B,E 
A,B,D,E 
A,B,F,A,B,F,A,B,E 

•  Cycle: A,B,F,A 
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DAGs and Trees 

A Directed Acyclic 
Graph (DAG) is a 
graph without cycles 
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A tree is like this: 



What is a “tree” ? 

•  “A tree is a graph such that….” 
– How would you define a tree ? 
– Want a tree to have a distinguished node, 

called the “root” 
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A Recursive Definition of Trees 
•  A graph with a single 

node r is a tree and its 
root is r 

•  If t1, t2, …, tn are trees 
with roots r1, r2, …, rn 
then the graph consisting 
of t1, t2, …, tn , a new 
node r, and n edges (r, ri), 
i=1,n, is a tree and its 
root is r. 
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Extended Binary Trees 

•  The empty graph is an 
extended binary tree 

•  A nonempty extended 
binary tree has a root 
node r, with a left child  
t1 and a right child t2 s.t. 
both  t1 and t2 are 
extended binary trees 
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Subtle Distinction 
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In an extended binary tree we distinguish between the 
left child and the right child:  
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Left child only Right child only Not an “extended” 
binary tree 



Full binary trees 

•  Now we want to rule out the empty trees 
and empty subtrees: “full binary tree” 

•  How do we do this ? 



Extended Binary Trees 

•  The graph consisting of a 
single node is a full 
binary tree 

•  A nonempty full binary 
tree has a root node r, 
with a left child  t1 and a 
right child t2 s.t. both  t1 
and t2 are full binary trees 
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Simplifying notation 

•  (•, T1, T2), tree with left subtree T1 and 
right subtree T2 

•   ε is the empty tree 
•  Extended Binary Trees (EBT) 

–   ε ∈ EBT 
–  if T1, T2 ∈ EBT,  then (•, T1, T2) ∈ EBT 

•  Full Binary Trees (FBT) 
–   • ∈ FBT 
–  if T1, T2 ∈ FBT,  then (•, T1, T2) ∈ FBT 



Recursive Functions on Trees 

•  N(T)  - number of vertices of T 
•  N(ε) = 0; N(•) = 1 
•  N(•, T1, T2) = 1 + N(T1) + N(T2) 

•  Ht(T) – height of T 
•  Ht(ε) = 0;   Ht(•) = 1 
•  Ht(•, T1, T2) = 1 + max(Ht(T1), Ht(T2)) 

NOTE: Height definition differs from the text 
Base case H(•) = 0 used in text 



More tree definitions: Fully 
balanced binary trees 

•   ε is a FBBT. 
•  if T1 and T2 are FBBTs, with Ht(T1) = 

Ht(T2), then (•, T1, T2) is a FBBT. 



And more trees: 
Almost balanced trees 

•   ε is a ABT. 
•  if T1 and T2 are ABTs with                     

Ht(T1) -1 ≤ Ht(T2) ≤ Ht(T1)+1                   
then (•, T1, T2) is a ABT. 


