CSE 321 Discrete Structures

January 22, 2010
Lecture 08: Inductive Definitions



Recursive Definitions of Sets

* Recursive definition
— Basis step: 0&€ S
— Recursive step: ifx& S, thenx+2€& S

What is the set S ?

« Exclusion rule: Every element in S follows
from basis steps and a finite number of
recursive steps

Terminology: “Recursive definition” = “Inductive Definition”



Recursive Definitions of Sets

* Recursive definition
— Basis step: 7€ S
— Recursive step: ifxe S, x€ S, thenx-y &S

* Note: here we allow arbitrary integers,
positive and negative

What is the set S ?




Recursive Definitions of Sets

* Recursive definition
— Basis step: 12&€Sand21&€S
— Recursive step: ifxe S, x€ S, thenx-y &S

What is the set S ?




Strings

The set 2* of strings over the alphabet X is
defined as follows:

« Basis: A € X" (M Is the empty string)

« Recursive: fweX* xe X, then wx € X*

Note: we sometimes write € for the empty string




Strings

« Example: 2 ={a, b, c}. Whatis 2* ?

« 3*={¢, a, b, aa, ab, ba, bb, aaa, aab, . . .}



Families of strings over X = {a, b}
o |_1

—w e L, thenawb € L,

. Whatis L, ?



Families of strings over X = {a, b}

- L,
- LMEL,
-welL,thenaw e L,
-welL,thenwbel,

- Whatis L, ?



Families of strings over X = {a, b}

Think of aas “(" and of b as )"

Define recursively the set L, of all well-
formed parenthesis

Strings that should be in L;:
— aaabbb, abababab, aabbabaaabbb, ...

Strings that should not be in Lj:

— aab (too many a’s), ba (unmatched), abbaab
(unmatched)



Recursive Function definitions

The length of a string: Len : £* - Int
Len(A) = 0;
Len(wx)=1+ Len(w); forw e X* x € X

The concatenation of two strings: Concat: £* x £* - X*
Concat(w, A) =w for w € X*
Concat(w,,w,x) = Concat(w,,w,)x for w,, w, iIn 2*, x € X




Well Formed Fomulae

>={p,q,r,s,...TLFEA, V, 2> = ()}
Define Well-Formed-Formula for
propositional logic

Basis Step

-p,q,r,s, ... T, Fare in WFF

Recursive Step

—If E and F are in WFF then (- E), (EA F), (Ev
F), (E—= F) are in WFF



Well Formed Fomulae

Write recursive definitions on WFF for the
following functions:

e Count the number of A’s in the formula

» Test if a formula is positive, i.e. every atomic
formula occurs under an even number of -
symbols (recall thatp 2> g=-p V q):
(-(-pA-q) V(sA --1t)is positive
(- p—=2>s) At ispositive

p =2 s Is not positive



Di-Graphs (Directed Graphs)

Nodes: AB,...
Edges: A=B, ...

Paths from Ato E:

A,B.E
A,B,D,.E
A,B,F,A,B,F,AB,E

Cycle: AB,F,A




DAGs and Trees

A Directed Acyclic A tree is like this:
Graph (DAG) is a
graph without cycles




What is a “tree” ?

« “Atree Is a graph such that....”
— How would you define a tree ?

— Want a tree to have a distinguished node,
called the “root”



A Recursive Definition of Trees

* A graph with a single @
node r is a tree and its
rootisr

o |ft G

, b, ..., t are trees
with rootsrqy, ry, ..., I, T )
then the graph consisting
oft,, t,, ..., t. ,anew
node r, and n edges (r, ), t b
I=1,n, is a tree and its

root isr.



Extended Binary Trees

* The empty graph is an
extended binary tree

* A nonempty extended /@\

binary tree has a root
node r, with a left child
t, and a right child t, s.t.
both t, and t, are
extended binary trees



Subtle Distinction

In an extended binary tree we distinguish between the
left child and the right child:

(5 o ®
® o ®

Left child only =~ Right child only Not an “extended”
binary tree




Full binary trees

 Now we want to rule out the empty trees
and empty subtrees: “full binary tree”

« How do we do this ?



Extended Binary Trees

« The graph consisting of a @
single node is a full
binary tree

* A nonempty full binary
tree has a root node r,
with a left child t, and a t,
right child t, s.t. both {,
and t, are full binary trees



Simplifying notation

(e, T4, T,), tree with left subtree T, and
right subtree T,

¢ IS the empty tree

Extended Binary Trees (EBT)

— ¢ € EBT

—if T,, T, € EBT, then (*, T,, T,) € EBT
Full Binary Trees (FBT)
— e FBT

—if T,, T, € FBT, then (s, T, T,) € FBT




Recursive Functions on Trees

N(T) - number of vertices of T
N(e) = 0; N(*) =1
N(e, T4, To) =1+ N(T,) + N(T,)

Ht(T) — height of T
Ht(e) = 0; Ht(e) =1
Ht(e, T,, T,) =1 + max(H(T,), Ht(T),))

NOTE: Height definition differs from the text
Base case H(®) = 0 used 1n text




More tree definitions: Fully
balanced binary trees

 ¢isaFBBT.

* if T, and T, are FBBTs, with H{(T,) =
Ht(T,), then (», T,, T,) is a FBBT.



And more trees:
Almost balanced trees

* egisaABT.

 if T, and T, are ABTs with
Ht(T,) -1 < Ht(T,) < H{(T,)+1
then (¢, T,, T,) is a ABT.



