CSE 321 Discrete Structures

January 25, 2010
Lecture 09: Structural Induction

Structural Induction

- Show P holds for all basis elements of S.
- Show that P holds for elements used to construct a new element of S, then P holds for the new elements.

Prove all elements of S are divisible by 3

- Basis: $6 \in S ; 15 \in S$;
- Recursive: if $x, y \in S$, then $x+y \in S$;

Structural Induction

Let $\Sigma=\{a, b\}$; think of $a=$ "(" and $b=") "$
Recall our toy language $L \subseteq \Sigma^{*}$ of well-formed parentheses:

- $\varepsilon \in L$
- If $x, y, z \in L$ then $x a y b z \in L$

Prove that every string in L has the same number of a's and of b's

Structural Induction

For every $w \in L$ denote $A(w)$ and $B(w)$ the number of a's and of b's in w.
We prove that $A(w)=B(w)$ by structural induction on w

- If $w=\varepsilon$, then $A(w)=B(w)=0$
- If $x, y, z \in L$ and $w=x a y b z$, then:
- The inductive hypothesis is:
$A(x)=B(x)$ and $A(y)=B(y)$ and $A(z)=B(z)$
$-A(w)=A(x)+A(y)+A(z)+1$
$-B(w)=B(x)+B(y)+B(z)+1$
- Hence $A(w)=B(w)$

Recursive Functions on Trees

- $N(T)$ - number of vertices of T
- $N(\varepsilon)=0 ; N(\cdot)=1$
- $N\left(\cdot, T_{1}, T_{2}\right)=1+N\left(T_{1}\right)+N\left(T_{2}\right)$
- $\mathrm{Ht}(\mathrm{T})$ - height of T
- $\mathrm{Ht}(\varepsilon)=0 ; \mathrm{Ht}(\cdot)=1$
- $\mathrm{Ht}\left(\cdot, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)=1+\max \left(\mathrm{Ht}\left(\mathrm{T}_{1}\right), \mathrm{Ht}\left(\mathrm{T}_{2}\right)\right)$

NOTE: Height definition differs from the text
Base case $\mathrm{H}(\bullet)=0$ used in text

Structural Induction

- Prove that for every non-empty binary tree T, the following holds:

$$
\mathrm{N}(\mathrm{~T}) \leq 2^{\mathrm{Ht}(\mathrm{~T})}-1
$$

Structural Induction

Claim: $N(T) \leq 2^{H(T)}-1$

- If $\mathrm{T}=\bullet$ then $\mathrm{N}(\bullet)=1, \mathrm{Ht}(\bullet)=1$; claim holds
- If $T=\left(\cdot, T_{1}, T_{2}\right)$, let $x=\operatorname{Ht}\left(T_{1}\right), y=H t\left(T_{2}\right)$
- By induction: $N\left(T_{1}\right) \leq 2^{x}-1$ and $N\left(T_{2}\right) \leq 2^{y}-1$
$-N(T)=1+N\left(T_{1}\right)+N\left(T_{2}\right)$ and $H(T)=1+\max (x, y)$

$$
\begin{aligned}
\mathrm{N}(\mathrm{~T}) & \leq 1+2^{\mathrm{x}}-1+2^{\mathrm{y}}-1=2^{\mathrm{x}}+2^{\mathrm{y}}-1 \\
& \leq 2^{\mathrm{Ht}(\mathrm{~T})-1}+2^{\mathrm{Ht}(\mathrm{~T})-1}-1=2^{\mathrm{Ht}(\mathrm{~T})}-1
\end{aligned}
$$

The Importance of the Height

- $\mathrm{N}(\mathrm{T}) \leq 2^{\mathrm{Ht}(\mathrm{T})}-1$ implies the following important property of binary trees:

$$
H t(T) \geq \log (N(T)+1)
$$

- What about the upper bound: ?

$$
\mathrm{Ht}(\mathrm{~T}) \leq ? ?
$$

- For most algorithms we want $\mathrm{Ht}(\mathrm{T})$ "small":
$H t(T) \approx \log (N(T))$ is GREAT; $H t(T) \approx N(T)$ is BAD

Fully balanced binary trees

- ε is a FBBT.
- if T_{1} and T_{2} are FBBTs, with $\mathrm{Ht}\left(\mathrm{T}_{1}\right)=\operatorname{Ht}\left(\mathrm{T}_{2}\right)$, then $\left(\cdot, T_{1}, T_{2}\right)$ is a FBBT.
- Prove at home that in a FBBT:

$$
\mathrm{N}(\mathrm{~T})=2^{\mathrm{Ht}(\mathrm{~T})}-1
$$

- This is nice, BUT: in practice can't keep trees fully balanced...

Almost balanced trees

Recursive definition:

- ε is a ABT.
- if T_{1} and T_{2} are ABTs with $H t\left(T_{1}\right)-1 \leq H t\left(T_{2}\right) \leq H t\left(T_{1}\right)+1$ then $T=\left(\cdot, T_{1}, T_{2}\right)$ is a ABT.

Let $\mathrm{k}_{1}=\mathrm{Ht}\left(\mathrm{T}_{1}\right), \mathrm{k}_{2}=\mathrm{Ht}\left(\mathrm{T}_{2}\right)$. Three cases:
$\mathrm{k}_{1}=\mathrm{k}_{2}+1$ or $\mathrm{k}_{1}=\mathrm{k}_{2}$ or $\mathrm{k}_{2}=\mathrm{k}_{1}+1$

Is this Tree Almost Balanced?

Almost balanced trees

- So an "almost balanced tree" T can be quite imbalanced!
- Do we actually have $\mathrm{Ht}(\mathrm{T}) \approx \log (\mathrm{N}(\mathrm{T}))$?

Almost Balanced Binary Trees

Let f_{k} be the following sequence:

$$
g_{0}=0, \quad g_{1}=0, \quad g_{k}=1+g_{k-1}+g_{k-2}
$$

(we will compute later the sequence g_{k})

Let T be an almost balanced tree. Prove the following:

If $\mathrm{n}=\mathrm{N}(\mathrm{T})$ and $\mathrm{k}=\mathrm{Ht}(\mathrm{T})$ then $\mathrm{n} \geq \mathrm{g}_{\mathrm{k}}$

Structural induction on T:

If $n=N(T)$ and $k=H t(T)$ then $n \geq g_{k}$

If $T=\varepsilon$, then $n=0, k=0$, and $0 \geq g_{0}$
If $T=\left(\cdot, T_{1}, T_{2}\right)$; let $n_{i}=N\left(T_{i}\right), k_{i}=\operatorname{Ht}\left(T_{i}\right)$, for $i=1,2$;
By induction we know $\mathrm{n}_{\mathrm{i}} \geq \mathrm{g}_{\mathrm{ki}}$

- Case 1: $\mathrm{k}_{1}=\mathrm{k}_{2}+1$. Then $\mathrm{k}=\mathrm{k}_{1}+1$ and: $\mathrm{n}=1+\mathrm{n}_{1}+\mathrm{n}_{2} \geq 1+\mathrm{g}_{\mathrm{k} 1}+\mathrm{g}_{\mathrm{k} 2}=1+\mathrm{g}_{\mathrm{k}-1}+\mathrm{g}_{\mathrm{k}-2}=\mathrm{g}_{\mathrm{k}}$
- Case 2: $\mathrm{k}_{1}=\mathrm{k}_{2}$. Then $\mathrm{k}=\mathrm{k}_{1}+1$ and: $\mathrm{n}=1+\mathrm{n}_{1}+\mathrm{n}_{2} \geq 1+\mathrm{g}_{\mathrm{k} 1}+\mathrm{g}_{\mathrm{k} 2}=1+\mathrm{g}_{\mathrm{k}-1}+\mathrm{g}_{\mathrm{k}-1} \geq \mathrm{g}_{\mathrm{k}}$
- Case 3: $k_{2}=k_{1}+1$. Then $k=k_{2}+1$ and: $n=1+n_{1}+n_{2} \geq 1+g_{k 1}+g_{k 2}=1+g_{k-2}+g_{k-1}=g_{k}$

Where did we use g_{1} ? In Case 2: $1+2 \mathrm{~g}_{\mathrm{k}-1} \geq \mathrm{g}_{\mathrm{k}} ; \mathrm{g}_{1} \leq 1+2 \mathrm{~g}_{0}=1$

Solving Recurrences

$$
f_{0}=1, \quad f_{1}=1, \quad f_{k}=f_{k-1}+f_{k-2}
$$

Characteristic equation: $x^{2}-x-1=0$
Roots: $x_{1,2}=(1 \pm \sqrt{5}) / 2$

$$
f_{k}=A x_{1}^{k}+B x_{2}^{k}
$$

Solve A, B from initial conditions: $f_{0}=1, f_{1}=2$
$\mathrm{f}_{\mathrm{k}}=1 / \sqrt{ } 5[(1+\sqrt{ } 5) / 2]^{\mathrm{k}}-1 / \sqrt{ } 5[(1-\sqrt{ } 5) / 2]^{\mathrm{k}}$

Dominant term
Negative, but tiny

Solving Recurrences

Solve:

$$
g_{0}=0, \quad g_{1}=0, \quad g_{k}=1+g_{k-1}+g_{k-2}
$$

Let $f_{k}=g_{k}+1$. Then:

$$
f_{0}=1, \quad f_{1}=1, \quad f_{k}=f_{k-1}+f_{k-2}
$$

We have solved f_{k} already; thus $g_{k}=f_{k}-1$

Almost Balanced Binary Trees

What is its height ?

$$
\begin{aligned}
& \text { If } n=N(T) \text { and } k=H t(T) \text { then } \\
& \qquad n \geq g_{k}=f_{k}-1 \approx 1 / \sqrt{ } 5[(1+\sqrt{ } 5) / 2]^{k}-1
\end{aligned}
$$

$\log (n+1) \geq k \log [(1+\sqrt{ } 5) / 2]-\log \sqrt{ } 5$

$$
k \lesssim \log (n+1) / \log [(1+\sqrt{5}) / 2]
$$

