CSE 321 Discrete Structures

January 25, 2010 Lecture 09: Structural Induction

- Show P holds for all basis elements of S.
- Show that P holds for elements used to construct a new element of S, then P holds for the new elements.

Prove all elements of S are divisible by 3

- Basis: $6 \in S$; $15 \in S$;
- Recursive: if x, $y \in S$, then $x + y \in S$;

Let $\Sigma = \{a, b\}$; think of a = "(" and b = ")"

Recall our toy language $L \subseteq \Sigma^*$ of well-formed parentheses:

- ε ∈ L
- If x, y, $z \in L$ then xaybz $\in L$

Prove that every string in L has the same number of a's and of b's

For every $w \in L$ denote A(w) and B(w) the number of a's and of b's in w.

We prove that A(w) = B(w) by structural induction on w

• If
$$w = \varepsilon$$
, then $A(w) = B(w) = 0$

• If x, y,
$$z \in L$$
 and $w = xaybz$, then:

- The inductive hypothesis is:

$$A(x) = B(x)$$
 and $A(y) = B(y)$ and $A(z) = B(z)$
 $- A(w) = A(x) + A(y) + A(z) + 1$
 $- B(w) = B(x) + B(y) + B(z) + 1$

$$-$$
 Hence A(w) = B(w)

Recursive Functions on Trees

- N(T) number of vertices of T
- N(ε) = 0; N(•) = 1
- $N(\bullet, T_1, T_2) = 1 + N(T_1) + N(T_2)$
- Ht(T) height of T
- $Ht(\varepsilon) = 0; Ht(\bullet) = 1$
- $Ht(\bullet, T_1, T_2) = 1 + max(Ht(T_1), Ht(T_2))$

NOTE: Height definition differs from the text Base case $H(\bullet) = 0$ used in text

Prove that for every non-empty binary tree
 T, the following holds:

$$\mathsf{N}(\mathsf{T}) \leq 2^{\mathsf{Ht}(\mathsf{T})} - 1$$

Claim: $N(T) \leq 2^{Ht(T)} - 1$

- If T =• then $N(\bullet) = 1$, $Ht(\bullet) = 1$; claim holds
- If $T = (\bullet, T_1, T_2)$, let $x = Ht(T_1)$, $y = Ht(T_2)$ - By induction: $N(T_1) \le 2^x - 1$ and $N(T_2) \le 2^y - 1$ - $N(T) = 1 + N(T_1) + N(T_2)$ and H(T) = 1 + max(x, y)

$$\begin{split} N(T) &\leq 1 + 2^{x} - 1 + 2^{y} - 1 = 2^{x} + 2^{y} - 1 \\ &\leq 2^{Ht(T)-1} + 2^{Ht(T)-1} - 1 = 2^{Ht(T)} - 1 \end{split}$$

The Importance of the Height

N(T) ≤ 2^{Ht(T)} – 1 implies the following important property of binary trees:

$Ht(T) \ge log(N(T) + 1)$

• What about the upper bound: ?

$$Ht(T) \leq ??$$

• For most algorithms we want Ht(T) "small": Ht(T) $\approx \log(N(T))$ is GREAT; Ht(T) $\approx N(T)$ is BAD

Fully balanced binary trees

- ϵ is a FBBT.
- if T_1 and T_2 are FBBTs, with $Ht(T_1) = Ht(T_2)$, then (•, T_1 , T_2) is a FBBT.
- Prove at home that in a FBBT:

$$N(T) = 2^{Ht(T)} - 1$$

• This is nice, BUT: in practice can't keep trees fully balanced...

Almost balanced trees

Recursive definition:

- ϵ is a ABT.
- if T_1 and T_2 are ABTs with Ht(T_1) -1 \leq Ht(T_2) \leq Ht(T_1)+1 then T = (•, T_1, T_2) is a ABT.

Let
$$k_1 = Ht(T_1)$$
, $k_2 = Ht(T_2)$. Three cases:
 $k_1 = k_2 + 1$ or $k_1 = k_2$ or $k_2 = k_1 + 1$

Is this Tree Almost Balanced?

Almost balanced trees

- So an "almost balanced tree" T can be quite imbalanced !
- Do we actually have $Ht(T) \approx log(N(T))$?

Almost Balanced Binary Trees

Let f_k be the following sequence:

 $g_0 = 0$, $g_1 = 0$, $g_k = 1 + g_{k-1} + g_{k-2}$

(we will compute later the sequence g_k)

Let T be an almost balanced tree. Prove the following:

If
$$n = N(T)$$
 and $k = Ht(T)$ then $n \ge g_k$

Structural induction on T:

If n = N(T) and k = Ht(T) then $n \ge g_k$

If T = ϵ , then n = 0, k = 0, and $0 \ge g_0$

- If $T = (\bullet, T_1, T_2)$; let $n_i = N(T_i)$, $k_i = Ht(T_i)$, for i=1,2; By induction we know $n_i \ge g_{ki}$
- Case 1: $k_1 = k_2 + 1$. Then $k = k_1 + 1$ and: $n = 1 + n_1 + n_2 \ge 1 + g_{k1} + g_{k2} = 1 + g_{k-1} + g_{k-2} = g_k$
- Case 2: $k_1 = k_2$. Then $k = k_1 + 1$ and: $n = 1 + n_1 + n_2 \ge 1 + g_{k1} + g_{k2} = 1 + g_{k-1} + g_{k-1} \ge g_k$
- Case 3: $k_2 = k_1 + 1$. Then $k = k_2 + 1$ and: $n = 1 + n_1 + n_2 \ge 1 + g_{k1} + g_{k2} = 1 + g_{k-2} + g_{k-1} = g_k$

Where did we use g_1 ? In Case 2: $1 + 2g_{k-1} \ge g_k$; $g_1 \le 1 + 2g_0 = 1$

Solving Recurrences
$$f_0 = 1$$
, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$

Characteristic equation: $x^2 - x - 1 = 0$ Roots: $x_{1,2} = (1 \pm \sqrt{5})/2$ $f_{k} = A x_{1}^{k} + B x_{2}^{k}$ Solve A, B from initial conditions: $f_0=1$, $f_1=2$ $f_k = 1/\sqrt{5} \left[(1 + \sqrt{5})/2 \right]^k - 1/\sqrt{5} \left[(1 - \sqrt{5})/2 \right]^k$ Negative, but tiny Dominant term

Solving Recurrences

Solve:

$$g_0 = 0$$
, $g_1 = 0$, $g_k = 1 + g_{k-1} + g_{k-2}$
Let $f_k = g_k + 1$. Then:

$$f_0 = 1$$
, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$

We have solved f_k already; thus $g_k = f_k - 1$

Almost Balanced Binary Trees

What is its height?

If n = N(T) and k = Ht(T) then
n ≥
$$g_k = f_k - 1 \approx 1/\sqrt{5} [(1 + \sqrt{5})/2]^k - 1$$

 $\log(n+1) \ge k \log [(1 + \sqrt{5})/2] - \log \sqrt{5}$

$$k \le \log(n+1) / \log[(1 + \sqrt{5})/2]$$